Supporting Information

Syntheses of 7-dehydrocholesterol peroxides and their improved anticancer activity and selectivity over ergosterol peroxide

${ }^{a}$ Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry Chinese Academy of Sciences, Beijing 100190, P.R. China
${ }^{b}$ University of Chinese Academy of Sciences, Beijing 100049, P. R. China

Experimental section

Materials.
7-Dehydrocholesterol (7-DHC) was provided by Vidistone Chemical Company. Ergosterol, succinic anhydride, acetic anhydride, hematoporphyrin, eosin Y , methylene blue and meso-tetraphenylporphyrin (TPP) were purchased from Sigma-Aldrich. n-Hexane, methanol, benzene, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and pyridine of analytical grade were purchased from SCRC (Sinopharm Chemical Reagent Co., Ltd) and used without further treatment.

Instruments and methods.

${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, HMBC and COSY spectra were recorded on a Bruker DMX-400 MHz and 100 MHz spectrophotometer. High-resolution ESI mass spectra (HR ESI-MS) were determined on a Brucker APEX IV (7.0T) FT_MS.

Syntheses of 7-dehydrocholesteryl-3-0- β-acetate (2) and 7-dehydrocholestryl-3-0- β-hemisuccinate (3).
7-dehydrocholesterol ($1.00 \mathrm{~g}, 2.60 \mathrm{mmol}$) in 5 mL acetic anhydride (52 mmol) was stirred and refluxed for 0.5 h at $140^{\circ} \mathrm{C}$. After removal of acetic anhydride in vacuo, 10 mL distilled water was added. The solid was filtered and washed with water and then purified on silica gel using n-hexane/ethyl acetate ($15: 1$ in volume ratio) as eluent. The yield of 7-dehydrocholesteryl-3-o- β-acetate (2) was 81%. 7-dehydrocholestryl-3-o- β-hemisuccinate (3) was prepared in a similar way in a yield of 73%.

Cell culture.

Breast cancer cells SKOV-3, cervical carcinoma cells HeLa, lung cancer cells A549, prostatic carcinoma cells DU145 and human normal liver cells L-02 were provided by Cancer Institute, Chinese Academy of Medical Science. The cells were cultured in DMEM medium containing $10 \% \mathrm{FBS}, 100 \mathrm{U} / \mathrm{mL}$ penicillin/streptomycin at $37^{\circ} \mathrm{C}$ under a $5 \% \mathrm{CO}_{2}$ atmosphere, then plated at 2×10^{5} per well in 96 well plates and incubated for 24 h in 150 $\mu \mathrm{L}$ DMEM medium in the same conditions.

Cell cytotoxicity assay.

The cytotoxicity of $\mathbf{1 - 3}, \mathbf{1}^{\prime}-\mathbf{3}^{\prime}$ and EEP was evaluated by MTT assay. The cells were plated at 2×10^{5} per well in 96 well plates. After incubation for 24 h , the cells were treated with varied concentrations of the examined compounds for 48 h at $37^{\circ} \mathrm{C}$. The culture medium was removed and $200 \mu \mathrm{~L}$ MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide) solution was added and the cells were maintained at $37^{\circ} \mathrm{C}$ for 4 h . Then a mixed solution of $\mathrm{CH}_{3} \mathrm{OH} / \mathrm{DMSO}$ (1:1) was added and the absorbance at 595 nm was determined by a Multimode Plate Reader (EnSpire). The untreated cells served as the control and their viability was set as 100%.

Table S1. Reaction optimization for the synthesis of EEP, 2' and $\mathbf{3}^{\prime}$. ${ }^{\text {a }}$

Entry	Substrate	Product	Catalyst (mol\%)	solvent	$\mathrm{t}^{\mathrm{b}}(\mathrm{h})$	Yield $^{\mathrm{c}}(\%)$
1	ergosterol	EEP	$\operatorname{TPP}(0.1)$	pyridine	1	58
2	ergosterol	EEP	$\operatorname{TPP}(0.1)$	benzene	1	53
3	ergosterol	EEP	$\operatorname{TPP}(0.1)$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	3	44
4	ergosterol	EEP	$\operatorname{TPP}(0.1)$	n-hexane/ methanol (3:1)	1	67
5	2	2^{\prime}	$\operatorname{TPP}(0.1)$	n-hexane/ methanol (3:1)	3	78
6	3	3^{\prime}	TPP (0.1)	n-hexane/ methanol (3:1)	3	81

${ }^{\text {a }}$ Reaction conditions: 1.56 mmol substrate and $1.9 \mu \mathrm{M}$ TPP in 20 mL of solvent was subjected to visible light irradiation ($\geq 400 \mathrm{~nm}$)
at $0^{\circ} \mathrm{C}$ under magnetic stirring and bubbling with oxygen; ${ }^{\mathrm{b}}$ by which all substrate was consumed; ${ }^{\mathrm{c}}$ isolated yield.

Table S2. ${ }^{1} \mathrm{H}$ NMR chemical shifts of 2, 3, 1'-3' and EEP.

Position	${ }^{1} \mathrm{H}(\boldsymbol{\delta}, \mathrm{ppm})\left(\mathrm{in} \mathrm{CDCl}_{3}\right.$)					
	2	3	EEP	1'	2'	3'
H-3	4.70(m, 1H)	4.73(m, 1H)	3.92(m, 1H)	$3.97(\mathrm{~m}, 1 \mathrm{H})$	4.98(m, 1H)	5.02(m, 1H)
H-6	$\begin{gathered} 5.56(\mathrm{dd}, 1 \mathrm{H} \\ 2.4,5.6 \mathrm{~Hz}) \end{gathered}$	$\begin{gathered} 5.56(\mathrm{dd}, 1 \mathrm{H} \\ 2.4,4.8 \mathrm{~Hz}) \end{gathered}$	$\begin{gathered} 6.47(\mathrm{~d}, 1 \mathrm{H}, \\ 8.4 \mathrm{~Hz}) \end{gathered}$	$\begin{gathered} 6.51(\mathrm{~d}, 1 \mathrm{H} \\ 8.4 \mathrm{~Hz}) \end{gathered}$	$\begin{gathered} 6.51(\mathrm{~d}, 1 \mathrm{H}, 8.4 \\ \mathrm{Hz}) \end{gathered}$	$\begin{gathered} 6.51(\mathrm{~d}, 1 \mathrm{H}, 8.4 \\ \mathrm{Hz}) \end{gathered}$
H-7	$\begin{gathered} 5.38(\mathrm{dd}, 1 \mathrm{H} \\ 2.4,5.6 \mathrm{~Hz}) \end{gathered}$	$\begin{gathered} 5.38(\mathrm{dd}, 1 \mathrm{H} \\ 2.4,4.8 \mathrm{~Hz}) \end{gathered}$	$\begin{gathered} 6.21(\mathrm{~d}, 1 \mathrm{H} \\ 8.4 \mathrm{~Hz}) \end{gathered}$	$\begin{gathered} 6.24(\mathrm{~d}, 1 \mathrm{H} \\ 8.4 \mathrm{~Hz}) \end{gathered}$	$\begin{gathered} 6.23(\mathrm{~d}, 1 \mathrm{H}, 8.4 \\ \mathrm{Hz}) \end{gathered}$	$\begin{gathered} \text { 6.22(d, 1H, } 8.4 \\ \mathrm{~Hz}) \end{gathered}$
H-18	0.61(s, 3H)	$0.61(\mathrm{~s}, 3 \mathrm{H})$	0.81(s, 3H)	$0.80(\mathrm{~s}, 3 \mathrm{H})$	$0.79(\mathrm{~s}, 3 \mathrm{H})$	0.80(s, 3H)
H-19	0.93(s, 3H)	0.93 (s, 3H)	0.88(s, 3H)	$0.88(\mathrm{~s}, 3 \mathrm{H})$	0.89(s, 3H)	$0.89(\mathrm{~s}, 3 \mathrm{H})$
H-20						
H-21	$0.95(\mathrm{~s}, 3 \mathrm{H})$	$0.95(\mathrm{~s}, 3 \mathrm{H})$	$\begin{gathered} 1.00(\mathrm{~d}, 3 \mathrm{H} \\ 6.4 \mathrm{~Hz}) \end{gathered}$	$\begin{gathered} 0.90(\mathrm{~d}, 3 \mathrm{H} \\ 6.8 \mathrm{~Hz},) \end{gathered}$	0.91(s, 3H)	0.91(s, 3H)
H-22			$\begin{gathered} 5.14(\mathrm{dd}, 1 \mathrm{H} \\ 15.2,8.0 \mathrm{~Hz}, \end{gathered}$			
H-23			$\begin{gathered} 5.22(\mathrm{dd}, 1 \mathrm{H} \\ 15.2,7.6 \mathrm{~Hz}, \end{gathered}$			
H-26	$\begin{gathered} 0.86(\mathrm{~d}, 3 \mathrm{H} \\ 1.6 \mathrm{~Hz},) \end{gathered}$	$\begin{gathered} \text { 0.85(d,3H } \\ 1.2 \mathrm{~Hz},) \end{gathered}$	$\begin{gathered} \text { 0.81(d, 3H } \\ 6.4 \mathrm{~Hz}, \end{gathered}$	$\begin{gathered} 0.85(\mathrm{~d}, 3 \mathrm{H} \\ 1.6 \mathrm{~Hz}, \end{gathered}$	$\begin{gathered} 0.85(\mathrm{~d}, 3 \mathrm{H} \\ 1.6 \mathrm{~Hz},) \end{gathered}$	$\begin{gathered} 0.85(\mathrm{~d}, 3 \mathrm{H} \\ 2.0 \mathrm{~Hz},) \end{gathered}$
H-27	$\begin{gathered} 0.87(\mathrm{~d}, 3 \mathrm{H} \\ 1.6 \mathrm{~Hz},) \end{gathered}$	$\begin{gathered} \text { 0.87(d,3H } \\ 1.2 \mathrm{~Hz},) \end{gathered}$		$\begin{gathered} 0.87(\mathrm{~d}, 3 \mathrm{H} \\ 1.6 \mathrm{~Hz}, \end{gathered}$	$\begin{gathered} 0.87(\mathrm{~d}, 3 \mathrm{H}, 1.6 \\ \mathrm{Hz}) \end{gathered}$	$\begin{gathered} 0.87(\mathrm{~d}, 3 \mathrm{H} \\ 2.0 \mathrm{~Hz},) \end{gathered}$
$\mathrm{H}-28$ $\mathrm{H}-1^{\prime}$						
H-2'	2.04(s, 3H)	$\begin{gathered} 2.63(\mathrm{t}, 2 \mathrm{H} \\ 4.8 \mathrm{~Hz}) \end{gathered}$			$2.01(\mathrm{~s}, 3 \mathrm{H})$	$\begin{gathered} 2.59(\mathrm{t}, 2 \mathrm{H}, 6.4 \\ \mathrm{Hz}) \end{gathered}$
H-3'		$\begin{gathered} 2.67(\mathrm{t}, 2 \mathrm{H} \\ 4.8 \mathrm{~Hz}) \end{gathered}$				$\begin{gathered} 2.68(\mathrm{t}, 2 \mathrm{H}, 6.4 \\ \mathrm{Hz}) \end{gathered}$
H-4'						

Atom numbering of $\mathbf{2}^{\prime}$ and $\mathbf{3}^{\prime}$ are as follows.

Table S3. ${ }^{13} \mathrm{C}$ NMR chemical shifts of 2, 3, 1'-3' and EEP.

Position	${ }^{13} \mathrm{C}(\delta, \mathrm{ppm})\left(\mathrm{in} \mathrm{CDCl}_{3}\right)$					
	2	3	EEP	$1{ }^{\prime}$	2^{\prime}	3^{\prime}
C-1	28.1	28.1	34.8	28.0	26.4	26.3
C-2	36.3	36.2	30.1	30.2	33.4	33.2
C-3	72.9	73.5	66.4	66.4	69.6	70.2
C-4	38.1	38.0	37.0	37.1	37.1	37.1
C-5	138.7	138.5	82.2	82.3	81.8	81.8
C-6	120.4	120.4	130.7	130.8	131.0	131.1
C-7	116.4	116.4	135.6	135.6	135.2	135.1
C-8	141.7	141.6	79.4	79.5	79.5	79.5
C-9	46.2	46.2	51.2	51.3	51.3	51.2
C-10	37.3	37.2	37.0	36.1	36.1	36.1
C-11	23.2	23.1	23.4	23.5	23.5	23.5
C-12	39.7	39.6	39.4	39.6	39.6	39.6
C-13	43.1	43.1	44.6	44.9	44.9	44.9
C-14	54.6	54.6	51.8	51.8	51.7	51.7
C-15	21.2	21.2	20.9	20.7	20.7	20.7
C-16	28.3	28.2	28.6	28.3	28.3	28.3
C-17	56.1	56.1	56.3	56.6	56.6	56.6
C-18	11.9	11.9	12.9	12.7	12.8	12.7
C-19	16.3	16.3	18.2	18.2	18.1	18.1
C-20	39.4	39.3	39.7	39.6	39.6	39.6
C-21	19.0	19.0	19.7	18.7	18.7	18.7
C-22	36.3	36.3	132.4	34.9	34.5	34.4
C-23	24.0	24.0	135.2	23.9	23.9	23.9
C-24	36.8	36.7	42.8	35.3	35.3	35.3
C-25	28.2	28.1	33.1	28.1	28.1	28.1
C-26	22.6	22.6	20.0	22.6	22.6	22.6
C-27	22.9	22.9	20.7	22.9	22.9	22.8
C-28			17.6			
C-1'	170.5	171.584			170.0	171.2
C-2'	21.4	29.1			21.3	29.0
C-3'		29.4				29.3
C-4'		177.7				177.4

Figure S1. HR ESI-MS spectrum of 2.

Figure S2. HR ESI-MS spectrum of $\mathbf{3}$.

Figure S3. HR ESI-MS spectrum of EEP.

Figure S4. HR ESI-MS spectrum of CEP (1').

Figure S5. HR ESI-MS spectrum of $\mathbf{2}^{\prime}$.

Figure S6. HR ESI-MS spectrum of $\mathbf{3}^{\prime}$.

Figure S7. ${ }^{1} \mathrm{H}$ NMR spectrum of 2.

Figure S8. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2}$.

Figure S9. COSY spectrum of $\mathbf{2}$.

Figure S10. HMBC spectrum of 2.

Figure S11. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3}$.

Figure S12. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3}$.

Figure S13. COSY spectrum of $\mathbf{3}$.

Figure S14. HMBC spectrum of 3 .

Figure S15. ${ }^{1} \mathrm{H}$ NMR spectrum of EEP.

Figure S16. ${ }^{13} \mathrm{C}$ NMR spectrum of EEP.

Figure S17. COSY spectrum of EEP.

Figure S18. HMBC spectrum of EEP.

Figure S19. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1}^{\prime}$.

Figure S20. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1}^{\prime}$.

Figure $\mathbf{S 2 1}$. COSY spectrum of $\mathbf{1}^{\prime}$.

Figure S22. HMBC spectrum of $\mathbf{1}^{\prime}$.

Figure S23. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2}^{\prime}$.

Figure S24. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2}^{\prime}$.

Figure S25. COSY spectrum of $\mathbf{2}^{\prime}$.

Figure S26. HMBC spectrum of $\mathbf{2}^{\prime}$.

Figure S27. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3}^{\prime}$.

Figure S28. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3}^{\prime}$.

Figure $\mathbf{S 2 9 .}$. COSY spectrum of $\mathbf{3}^{\prime}$.

Figure S30. HMBC spectrum of $\mathbf{3}^{\prime}$.

