Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

Supporting Information

Syntheses of 7-dehydrocholesterol peroxides and their improved anticancer activity and selectivity over ergosterol peroxide

Na-na Tian,^{a,b} Chao Li,^{*,a} Na Tian,^{a,b} Qian-xiong Zhou,^a Yuan-jun Hou,^a Bao-wen Zhang,^a and Xue-song Wang^{*,a,b}

^aKey Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry Chinese Academy of Sciences, Beijing 100190, P.R. China ^bUniversity of Chinese Academy of Sciences, Beijing 100049, P. R. China

Experimental section

Materials.

7-Dehydrocholesterol (7-DHC) was provided by Vidistone Chemical Company. Ergosterol, succinic anhydride, acetic anhydride, hematoporphyrin, eosin Y, methylene blue and *meso*-tetraphenylporphyrin (TPP) were purchased from Sigma-Aldrich. *n*-Hexane, methanol, benzene, CH_2Cl_2 and pyridine of analytical grade were purchased from SCRC (Sinopharm Chemical Reagent Co., Ltd) and used without further treatment.

Instruments and methods.

¹H NMR, ¹³C NMR, HMBC and COSY spectra were recorded on a Bruker DMX-400 MHz and 100 MHz spectrophotometer. High-resolution ESI mass spectra (HR ESI-MS) were determined on a Brucker APEX IV (7.0T) FT_MS.

Syntheses of 7-dehydrocholesteryl-3-o-β-acetate (2) and 7-dehydrocholestryl-3-o-β-hemisuccinate (3).

7-dehydrocholesterol (1.00 g, 2.60 mmol) in 5 mL acetic anhydride (52 mmol) was stirred and refluxed for 0.5 h at 140 °C. After removal of acetic anhydride in vacuo, 10 mL distilled water was added. The solid was filtered and washed with water and then purified on silica gel using *n*-hexane/ethyl acetate (15:1 in volume ratio) as eluent. The yield of 7-dehydrocholesteryl-3-o- β -acetate (2) was 81%. 7-dehydrocholestryl-3-o- β -hemisuccinate (3) was prepared in a similar way in a yield of 73%.

Cell culture.

Breast cancer cells SKOV-3, cervical carcinoma cells HeLa, lung cancer cells A549, prostatic carcinoma cells DU145 and human normal liver cells L-02 were provided by Cancer Institute, Chinese Academy of Medical Science. The cells were cultured in DMEM medium containing 10% FBS, 100U/mL penicillin/streptomycin at 37° C under a 5% CO₂ atmosphere, then plated at 2×10^{5} per well in 96 well plates and incubated for 24 h in 150 µL DMEM medium in the same conditions.

Cell cytotoxicity assay.

The cytotoxicity of **1-3**, **1'-3'** and EEP was evaluated by MTT assay. The cells were plated at 2×10^5 per well in 96 well plates. After incubation for 24 h, the cells were treated with varied concentrations of the examined compounds for 48 h at 37°C. The culture medium was removed and 200 µL MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide) solution was added and the cells were maintained at 37°C for 4 h. Then a mixed solution of CH₃OH/DMSO (1:1) was added and the absorbance at 595 nm was determined by a Multimode Plate Reader (EnSpire). The untreated cells served as the control and their viability was set as 100%.

Entry	Substrate	Product	Catalyst (mol%)	solvent	t ^b (h)	Yield °(%)
1	ergosterol	EEP	TPP (0.1)	pyridine	1	58
2	ergosterol	EEP	TPP (0.1)	benzene	1	53
3	ergosterol	EEP	TPP (0.1)	CH_2Cl_2	3	44
4	ergosterol	EEP	TPP (0.1)	<i>n</i> -hexane/	1	67
				methanol (3:1)		
5	2	2′	TPP (0.1)	<i>n</i> -hexane/	3	78
				methanol (3:1)		
6	3	3′	TPP (0.1)	<i>n</i> -hexane/	3	81
				methanol (3:1)		

Table S1. Reaction optimization for the synthesis of EEP, 2' and 3'.ª

^a Reaction conditions: 1.56 mmol substrate and 1.9 μ M TPP in 20 mL of solvent was subjected to visible light irradiation (\geq 400 nm) at 0°C under magnetic stirring and bubbling with oxygen; ^b by which all substrate was consumed; ^c isolated yield.

	¹ Η (δ, ppm) (in CDCl ₃)							
Position	2	3	EEP	1′	2'	3'		
Н-3	4.70(m,1H)	4.73(m,1H)	3.92(m, 1H)	3.97(m, 1H)	4.98(m, 1H)	5.02(m, 1H)		
H-6	5.56(dd, 1H,	5.56(dd, 1H,	6.47(d, 1H,	6.51(d, 1H,	6.51(d, 1H, 8.4	6.51(d, 1H, 8.4		
	2.4, 5.6Hz)	2.4, 4.8Hz)	8.4 Hz)	8.4 Hz)	Hz)	Hz)		
H-7	5.38(dd, 1H,	5.38(dd, 1H,	6.21(d, 1H,	6.24(d, 1H,	6.23(d, 1H, 8.4	6.22(d, 1H, 8.4		
	2.4, 5.6Hz)	2.4, 4.8Hz)	8.4 Hz)	8.4 Hz)	Hz)	Hz)		
H-18	0.61(s, 3H)	0.61(s, 3H)	0.81(s, 3H)	0.80(s, 3H)	0.79(s, 3H)	0.80(s, 3H)		
H-19	0.93(s, 3H)	0.93(s, 3H)	0.88(s, 3H)	0.88(s, 3H)	0.89(s, 3H)	0.89(s, 3H)		
H-20								
H-21	0.95(s, 3H)	0.95(s, 3H)	1.00(d, 3H,	0.90(d, 3H,	0.91(s, 3H)	0.91(s, 3H)		
			6.4 Hz)	6.8 Hz,)				
H-22			5.14(dd, 1H,					
			15.2, 8.0 Hz,)					
Н-23			5.22(dd, 1H,					
			15.2, 7.6 Hz,)					
H-26	0.86(d,3H,	0.85(d,3H,	0.81(d, 3H,	0.85(d,3H,	0.85(d,3H,	0.85(d,3H,		
	1.6 Hz,)	1.2 Hz,)	6.4 Hz,)	1.6 Hz,)	1.6 Hz,)	2.0 Hz,)		
H-27	0.87(d,3H,	0.87(d,3H,		0.87(d, 3H,	0.87(d, 3H, 1.6	0.87(d,3H,		
	1.6 Hz,)	1.2 Hz,)		1.6 Hz,)	Hz)	2.0 Hz,)		
H-28								
H-1′								
H-2′	2.04(s, 3H)	2.63(t, 2H,			2.01(s, 3H)	2.59(t, 2H, 6.4		
		4.8 Hz)				Hz)		
H-3′		2.67(t, 2H,				2.68(t, 2H, 6.4,		
		4.8 Hz)				Hz)		
H-4′								

Table S2. ¹H NMR chemical shifts of 2, 3, 1'-3' and EEP.

Atom numbering of 2' and 3' are as follows.

Position	¹³ C (δ, ppm) (in CDCl ₃)						
	2	3	EEP	1′	2	3′	
C-1	28.1	28.1	34.8	28.0	26.4	26.3	
C-2	36.3	36.2	30.1	30.2	33.4	33.2	
C-3	72.9	73.5	66.4	66.4	69.6	70.2	
C-4	38.1	38.0	37.0	37.1	37.1	37.1	
C-5	138.7	138.5	82.2	82.3	81.8	81.8	
C-6	120.4	120.4	130.7	130.8	131.0	131.1	
C-7	116.4	116.4	135.6	135.6	135.2	135.1	
C-8	141.7	141.6	79.4	79.5	79.5	79.5	
C-9	46.2	46.2	51.2	51.3	51.3	51.2	
C-10	37.3	37.2	37.0	36.1	36.1	36.1	
C-11	23.2	23.1	23.4	23.5	23.5	23.5	
C-12	39.7	39.6	39.4	39.6	39.6	39.6	
C-13	43.1	43.1	44.6	44.9	44.9	44.9	
C-14	54.6	54.6	51.8	51.8	51.7	51.7	
C-15	21.2	21.2	20.9	20.7	20.7	20.7	
C-16	28.3	28.2	28.6	28.3	28.3	28.3	
C-17	56.1	56.1	56.3	56.6	56.6	56.6	
C-18	11.9	11.9	12.9	12.7	12.8	12.7	
C-19	16.3	16.3	18.2	18.2	18.1	18.1	
C-20	39.4	39.3	39.7	39.6	39.6	39.6	
C-21	19.0	19.0	19.7	18.7	18.7	18.7	
C-22	36.3	36.3	132.4	34.9	34.5	34.4	
C-23	24.0	24.0	135.2	23.9	23.9	23.9	
C-24	36.8	36.7	42.8	35.3	35.3	35.3	
C-25	28.2	28.1	33.1	28.1	28.1	28.1	
C-26	22.6	22.6	20.0	22.6	22.6	22.6	
C-27	22.9	22.9	20.7	22.9	22.9	22.8	
C-28			17.6				
C-1′	170.5	171.584			170.0	171.2	
C-2′	21.4	29.1			21.3	29.0	
C-3′		29.4				29.3	
C-4′		177.7				177.4	

Table S3. ¹³C NMR chemical shifts of 2, 3, 1'-3' and EEP.

Figure S6. HR ESI-MS spectrum of 3'.

Figure S7. ¹H NMR spectrum of 2.

Figure S8. ¹³C NMR spectrum of 2.

Figure S9. COSY spectrum of 2.

Figure S10. HMBC spectrum of 2.

Figure S11. ¹H NMR spectrum of 3.

Figure S12. ¹³C NMR spectrum of 3.

Figure S13. COSY spectrum of 3.

Figure S14. HMBC spectrum of 3.

Figure S15. ¹H NMR spectrum of EEP.

Figure S16. ¹³C NMR spectrum of EEP.

Figure S17. COSY spectrum of EEP.

Figure S18. HMBC spectrum of EEP.

Figure S19. ¹H NMR spectrum of 1'.

Figure S20. ¹³C NMR spectrum of 1'.

Figure S22. HMBC spectrum of 1'.

Figure S23. ¹H NMR spectrum of 2'.

Figure S24. ¹³C NMR spectrum of 2'.

Figure S25. COSY spectrum of 2'.

Figure S26. HMBC spectrum of 2'.

Figure S27. ¹H NMR spectrum of 3'.

Figure S28. ¹³C NMR spectrum of 3'.

Figure S29. COSY spectrum of 3'.

Figure S30. HMBC spectrum of 3'.