Supporting Information

The NICS Values Scan in Three-dimensional Space of the hoop-shaped π-conjugated molecules:

[6] $]_{8}$ cyclacene and [16]trannulene

Qing Li, ${ }^{\text {a,b }}{ }^{\text {b }}$ Hong-Liang $\mathrm{Xu}^{\mathrm{a}^{*}}$ and Zhong-Min Su ${ }^{\text {a,b, }, *}$
${ }^{a}$ Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China.

${ }^{b}$ Department of Chemistry, Faculty of Science, Yanbian University, Yanji, Jilin, 133002, China.

Contents

1. The ACID of [10]trannulene (Figure. S1)
2. The ACID of [12]trannulene (Figure. S2)
3. The ACID of [14]trannulene (Figure. S3)
4. The ACID of [20]trannulene (Figure. S4)
5. The ACID of [6] $]_{5}$ cyclacene (Figure. S5)
6. The ACID of [6] ${ }_{6}$ cyclacene (Figure. S6)
7. The ACID of $[6]_{7}$ cyclacene (Figure. S7)
8. The ACID of $[6]_{10}$ cyclacene (Figure. S8)
9. The planar NICS values scan of $\mathbf{P}(\mathbf{L}=\mathbf{0 . 2})$ for $[\mathbf{6}]_{8}$ cyclacene (Figure. S9)
10. The planar NICS values scan of $\mathbf{P}(\mathbf{L}=\mathbf{0 . 6})$ for $[\mathbf{6}]_{8}$ cyclacene (Figure. S10)
11. The planar NICS values scan of $\mathbf{P}(\mathbf{L}=\mathbf{0 . 8})$ for $[\mathbf{6}]_{8}$ cyclacene (Figure. S11)
12. The planar NICS values scan of $\mathbf{P}(\mathbf{L}=1.2)$ for $[6]_{8}$ cyclacene (Figure. S12)
13. The planar NICS values scan of $\mathbf{P}(\mathbf{L}=\mathbf{1 . 4})$ for $[\mathbf{6}]_{8}$ cyclacene (Figure. S13)
14. The planar NICS values scan of $\mathbf{P}(\mathbf{L}=1.6)$ for $[6]_{8}$ cyclacene (Figure. S14)
15. The planar NICS values scan of $\mathbf{P}(\mathbf{L}=\mathbf{2 . 4})$ for $[\mathbf{6}]_{8}$ cyclacene (Figure. S15)
16. The planar NICS values scan of $\mathbf{P}(\mathbf{L}=\mathbf{2 . 6})$ for $[\mathbf{6}]_{8}$ cyclacene (Figure. S16)
17. The planar NICS values scan of $\mathbf{P}(\mathbf{L}=\mathbf{2 . 8})$ for $[\mathbf{6}]_{8}$ cyclacene (Figure. S17)
18. The planar NICS values scan of $\mathbf{P}(\mathbf{L}=\mathbf{3 . 0})$ for $[6]_{8}$ cyclacene (Figure. S18)
19. The situation between the internal magnetic field during the course of two [16]trannulenes stacked into [6] ${ }_{8}$ cyclacene.

Figure S1. The ACID of [10]trannulene.

Figure S2. The ACID of [12]trannulene

Figure S3. The ACID of [14]trannulene.

Figure S4. The ACID of [20]trannulene.

Figure S5. The ACID of [6] cyclacene.

Figure S6. The ACID of [6] $]_{6}$ cyclacene.

Figure S7. The ACID of [6]7cyclacene.

Figure S8. The ACID of $[6]_{10}$ cyclacene.

Figure S9. The planar NICS values scan of $\mathbf{P}(\mathbf{L}=\mathbf{0 . 2})$ for $[\mathbf{6}]_{8}$ cyclacene.

Figure S10. The planar NICS values scan of $\mathbf{P}(\mathbf{L}=\mathbf{0 . 6})$ for $[\mathbf{6}]_{8}$ cyclacene.

Figure S11. The planar NICS values scan of $\mathbf{P}(\mathbf{L}=\mathbf{0 . 8})$ for $[\mathbf{6}]_{8}$ cyclacene.

Figure S12. The planar NICS values scan of $\mathbf{P}(\mathbf{L}=\mathbf{1 . 2})$ for $[\mathbf{6}]_{8}$ cyclacene.

Figure S13. The planar NICS values scan of $\mathbf{P}(\mathbf{L}=1.4)$ for $[6]_{8}$ cyclacene.

Figure S14. The planar NICS values scan of $\mathbf{P}(\mathbf{L}=\mathbf{1 . 6})$ for $[\mathbf{6}]_{8}$ cyclacene.

Figure S15. The planar NICS values scan of $\mathbf{P}(\mathbf{L}=\mathbf{2 . 4})$ for $[\mathbf{6}]_{8}$ cyclacene.

Figure S16. The planar NICS values scan of $\mathbf{P}(\mathbf{L}=\mathbf{2 . 6})$ for $[\mathbf{6}]_{8}$ cyclacene.

Figure S17. The planar NICS values scan of $\mathbf{P}(\mathbf{L}=\mathbf{2 . 8})$ for $[\mathbf{6}]_{8}$ cyclacene.

Figure S18. The planar NICS values scan of $\mathbf{P}(\mathbf{L}=\mathbf{3 . 0})$ for $[6]_{8}$ cyclacene.
The situation between the internal magnetic field during the course of two [16]trannulenes stacked into [6] ${ }_{8}$ cyclacene.

(a)

(b)

Figure S19. The diagram for the NICS values scan about the center cross-section $\mathbf{P}(\mathbf{D}=2.14 \sim 4.20 \AA)$ in the stack process.
In order to explicitly describe the situation between the internal magnetic field during the course of two [16]trannulenes stacked into $[6]_{8}$ cyclacene. We simulated the change of the center cross-section internal magnetic field in the stack process by the NICS values scan method. Firstly, the center cross-section is defined as $\mathbf{P}(\mathbf{D}=2.14 \sim 4.20 \AA)$, in which $\mathbf{D}(2.14 \sim 4.20 \AA)$ is defined as the distance of two [16]trannulenes in the stack process (Figure S19). On the other hand, the two kinds radius $\left(\mathbf{r}_{\text {ben }}(\mathbf{D}=2.14 \sim 4.20 \AA)\right.$ and $\left.\mathbf{r}_{\mathrm{c}-\mathrm{c}}(\mathbf{D}=2.14 \sim 4.20 \AA)\right)$ in center cross-section are listed in Figure S19. The distance from the center of the six-member ring to the center of the cross-section is represented by the $\mathbf{r}_{\text {ben }}(\mathbf{D}=2.14 \sim 4.20 \AA)$, and the distance from the center of the C-C bond to the center of the cross-section is represented by the $\mathbf{r}_{\text {c-c }}(\mathbf{D}=2.14 \sim 4.20 \AA)$.

Figure S20. The NICS scan in the cross-section $\mathbf{P}(\mathbf{D}=2.14 \sim 4.20 \AA)$.

Figure S20 lists the typical schematic diagram of the NICS values scan in the center cross-section $\mathbf{P}(\mathbf{D}=2.14 \sim 4.20)$ based on the results of the NICS values scan in the $\mathbf{r}_{\text {ben }}(\mathbf{D}=2.14 \sim 4.20)$ and $\mathbf{r}_{\mathrm{c}-\mathrm{c}}(\mathbf{D}=2.14 \sim 4.20)$. There is a significant difference of the internal magnetic field with one [16]trannulenes closed to another [16]trannulenes. When $\mathbf{D}>3.2 \AA$, there is a induced aromaticity due to the influence of two [16]trannulenes, and the aromaticity is enhancing with the \mathbf{D} decreasing. However, when $\mathbf{D} \approx 3.2 \AA$, the drastic anti-aromaticity has existed between two $[\mathbf{1 6}]$ trannulenes. With the formation of $[\mathbf{6}]_{8}$ cyclacene, the obvious aromaticity has been appeared gradually.

