Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

Effect of anthracene-based chalcone derivatives in the resazurin dye reduction assay mechanisms for investigation of gram-positive and gram-negative bacterial and fungal infection[†]

Gopi Prakash, Mani Boopathy, Ramasamy Selvam, Samuel Johnsanthoshkumar, Kathavarayan Subramanian*

Department of Chemistry, Anna University, Guindy, Chennai-600 025, India.

*Correspondence to: K. Subramanian, E-mail: kathsubramanian@yahoo.com

Supplementary Information

Contents	Page
• Spectral Data (FT-IR, ¹ H NMR, ¹³ C NMR, MASS)	 S2-S16
Optical Properties	 S17

Fig. S1 FT-IR spectra of ANNP

Fig. S2 FT-IR spectra of ANMNP

Fig. S3 FT-IR spectra of ANFL

Fig. S4 FT-IR spectra of ANAT

Fig. S5 FT-IR spectra of ANID

Fig. S6 FT-IR spectra of ANPT

Fig. S7 FT-IR spectra of ANTP

Fig. S8 ¹H-NMR spectra of ANNP

Fig. S9 ¹³C-NMR spectra of ANNP

Fig. S10 ¹H-NMR spectra of ANMNP

Fig. S11 ¹³C-NMR spectra of ANMNP

Fig. S12 ¹H-NMR spectra of ANFL

Fig. S13 ¹³C-NMR spectra of ANFL

Fig. S14 ¹H-NMR spectra of ANAT

Fig. S15 ¹³C-NMR spectra of ANAT

Fig. S16 ¹H-NMR spectra of ANID

Fig. S17 ¹³C-NMR spectra of ANID

Fig. S18 ¹H-NMR spectra of ANPT

Fig. S19 ¹³C-NMR spectra of ANPT

Fig. S20 ¹H-NMR spectra of ANTP

Fig. S21 ¹³C-NMR spectra of ANTP

Fig. S22 MASS spectra of ANNP

Fig. S23 MASS spectra of ANMNP

Fig. S24 MASS spectra of ANFL

Fig. S27 MASS spectra of ANPT

Fig. S28 MASS spectra of ANTP

Fig. S29 UV–Visible spectra of chalcone compounds.

Optical studies

Absorption spectra of chalcone based compounds **ANNP**, **ANMNP**, **ANFL**, **ANAT**, **ANID**, **ANPT**, **ANTP** (Fig. S21) were examined by UV–Visible spectrophotometer using chloroform as a reference solvent. Absorbtion maxima of all chalcone compounds show around at 260 nm. It is due to α , β unsaturated carbonyl carbon unit present in the molecule along with polycyclic aromatic rings. The results expose that, significant longer wavelength absorption peak obtained credited to π – π transition of all the compounds. The absorption peak observed at 252 nm for 6-methoxy naphthalene and thiophene substituted compounds **ANMNP** and **ANTP**, 254 nm for naphthalene, fluorine and anthracene substituted compounds **ANMP**, **ANFL** and **ANAT**, 256 for phenothiozine substituted compound **ANTP**. Among them **ANAT** showed higher λ_{max} value (263 nm) than other chalcones. It may be due to two anthracene rings connects by α , β -unsaturated carbonyl carbon of chalcone unit.