Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

Electronic Supplementary Information (ESI)

Sensitively ratiometric detection of Al(III) ions in 100% aqueous buffered solution using fluorescent probe based on the peptide receptor

Gi Won Hwang, Jongyong Jeon, Lok Nath Neupane, and Keun-Hyeung Lee[†]

^aBioorganic Chemistry Laboratory, Center for Design and Applications of Molecular Catalysts, Department of Chemistry and Chemical Engineering, Inha University, 253 Yonghyun-dong, Nam-gu, Incheon 402-751, Republic of Korea

[†]Corresponding author. fax: +82 32 867 5604. E-mail address: *leekh@inha.ac.kr* (K. H. Lee)

Contents:

Figure S1. HPLC chromatograph of 1	S2
Figure S2. ESI-MS spectrum of 1	S3
Figure S3. ¹ H NMR of 1 (20 mM) in 100% DMSO	S4
Figure S4. ¹³ C NMR of 1 (20 mM) in 100% DMSO	S5
Figure S5. Ratiometric response of 1 with Al(III)	S6
Figure S6. Job's plot for 1 with Al(III)	S7
Figure S7. Fitting curve of 1	S 8
Figure S8. Reversibility study of 1	S9
Figure S9. Determination of detection limits in aqueous solutions	S10
Figure S10. Al(III) titration of 1 under 1% of urine	S11

Figure S1. HPLC chromatograph of 1.

Figure S2. ESI-MS spectrum of 1.

Figure S3. ¹H NMR of **1** (20 mM) in 100% DMSO.

Figure S4. ¹³C NMR of **1** (20 mM) in 100% DMSO.

Figure S5. Ratiometric response of 1 to Al(III) ions in aqueous buffered solution (10 mM Hexamine, pH 5.5).

Figure S6. A Job's plot for **1** with Al(III) (emission intensity at 395 nm) in aqueous buffered solution (10 mM Hexamine, pH 5.5). (λ_{ex} =342 nm, slit=15/10 nm, 1% T attenuator).

Figure S7. Titration curve for determination of binding constant of **1** (10 μ M) to Al(III) in aqueous buffered solution (10 mM Hexamine, pH 5.5).

Figure S8. Fluorescence emission spectra of **1** (10 μ M) with Al(III) (35 μ M) in the presence and absence of EDTA (14 equiv.) in aqueous buffered solution (10 mM Hexamine, pH 5.5) (λ_{ex} =342 nm, slit=15/10 nm, 1% T attenuator).

Figure S9. The emission intensity ratio changes of **1** (5 μ M) with increasing concentrations of Al(III) in aqueous buffered solution (10 mM Hexamine, pH 5.5) prepared by distilled water (100%, v/v) ground water (50%, v/v), and tap water (50%, v/v), respectively.

Figure S10. (a) fluorescence emission spectra and (b) ratiometric response of 1 (50 μ M) with increasing concentration of Al(III) in aqueous buffered solutions (10 mM hexamine, pH 5.5) with 1% urine.