Dynamic sugar based bio-inspired, self-healing hydrogel exhibiting ESIPT

Santu Maity,^a Aroni Chatterjee,^b Nilanjan Chakraborty^b and Jhuma Ganguly^{a*}

^aDepartment of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah-711103, India

^bICMR Virus Unit, ID & BG Hospital campus, Kolkata-700010, India

Synthesis of 5-(benzo[d]thiazol-2-yl)-4-hydroxyisophthalaldehyde (BTHP)

5-(benzo[d]thiazol-2-yl)-4-hydroxyisophthalaldehyde was synthesized according to the literature procedure.¹ 2-(benzo[d]thiazol-2-yl)phenol (2g, 8.79 mmol) and Hexamine (1.84 g, 13.19 mmol) was dissolved in Trifluoroacetic acid (TFA, 25ml). The solution was refluxed for 12 hrs under Argon atmosphere and the progress of reaction was monitored by TLC. Then the mixture was cooled to room temperature and then 50 ml water was added to the reaction mixture and refluxed for 30 min. Then yellow precipitate formed was filtered and purified by column chromatography using ethyl acetate/petroleum ether (7/3, v/v) as eluent to afford yellow solid (2.07 g, 83 % yield).

¹H NMR (DMSO-d₆, 400 MHz): δ (ppm): 10.59 (s, 1H), 9.99 (s, 1H), 8.55 (s, 1H), 8.40 (s, 1H), 8.04 (d, 1H, J=8 Hz), 7.98 (d, 1H, J=8 Hz), 7.60-7.49 (m, 2H).

¹³C NMR (CDCl₃, 125 MHz): δ (ppm): 189.53, 151.16, 134.39, 127.49, 126.76, 122.73, 122.00.

MS (ESI MS): (m/z, %): 284.03 (MH⁺, 100 %).

Melting Point: > 200°C

¹H NMR, ¹³C NMR and ESI MS spectra of BTHP:

Figure S1: ¹H NMR spectrum (400 MHz) of BTHP in DMSO-d₆

Figure S2: ¹³C NMR spectrum (100 MHz) of **BTHP** in CDCl₃

User Spectra

Figure S3: ESI MS of BTHP in MeOH.

Figure S4: FT-IR spectra of CBTHP.

Figure S5: Solid state ¹³C CP-MAS NMR spectra of CBTHP.

Table S1:	Chemical	shifts of	CBTHP	by ¹³ C	CP-MAS	NMR
-----------	----------	-----------	-------	--------------------	---------------	-----

C ₁	C ₁ ,	C ₂	C ₃	C ₄	C ₅	C ₆	C ₇	C ₈	C ₉
104	97	76	62	82	62	58	161	170	25

Figure S6: SEM micrographs of freeze-dried CBTHP hydrogels. Surface morphologies of hydrogels with the volume ratio of chitosan and cross-linker (1) are 2:0.5 (a-1 – a-2), 2:1 (b-1 – b-2), 2:1.5 (c-1 – c-2) and 2:2 (d-1 – d-2).

Figure S7: Particle distribution in (a) TEM (b), (c) FE-SEM image; (d) Plot of % of particle vs particle from FE-SEM (fig. (b) and (c)).

Figure S8: Thermogravimetric analysis of CBTHP.

Figure S9: pH dependent swelling study of CBTHP.

Figure S10: Thickness dependent fluorescence intensity of CBTHP at (a) λ_{ex} =375 nm (b) λ_{ex} =455 nm.

Figure S11: Fluorescence decay profiles in both keto and enol tautomer of CBTHP (a) gel phase (b) solution state.

Figure S12: Appearance of spontaneous self-healing of CBTHP hydrogel.

Figure S13: Compression of the fluorescent intensity of MCF 7 cells and Vero cells of the cell images treated with CBTHP (Average intensity of 10 cells has been compared).

Probe	Туре	ESIPT	Self-healing	In-vitro	Reference	
Chondroitin sulfate	Polymeric hydrogel	No	Yes	Yes	2	
multiple aldehyde						
(CSMA) and						
N-succinyl-chitosan						
based hydrogel						
Chitosan/polyvinyl	Polymeric hydrogel	No	Yes	Yes	3	
alcohol						
Chitosan–Pluronic	Polymeric hydrogel	No	No	Yes	4	
Chitosan-	Polymeric hydrogel	No	Yes	No	5	
dibenzaldehyde-						
terminated telechelic						
poly(ethylene glycol)						
Chitosan	Polymeric hydrogel	No	No	No	6	
fibers via cross-linking	(Fluorescent)					
glutaric dialdehyde						
(GD)						
Pullulan (A-Pul), e-	Polymeric hydrogel	No	Yes	Yes	7	
poly-L-lysine (e-PL)						
and branched						
polyethyleneimine						

Table S2: Comparison of the chitosan-based (imine) fluorescent, self-healing hydrogels

Chitosan-based	Polymeric hydrogel	No	No	Yes	8
hydrogel	(Fluorescent)				
Chitosan-Graphene	Polymeric hydrogel	No	Yes	No	9
oxide					
2-(2-Hydroxyphenyl)-	Small chromophoric	Yes	No	No	10
benzothiazole-	system				
Rhodamine					
2-(2'-	Small chromophoric	Yes	No	No	11
Hydroxyphenyl)benzot	system				
hiazole Derivatives					
BODIPY-chitosan	Polymeric hydrogel	No	Yes	No	12
hydrogels	(Fluorescent)				
chitosan-5-	Polymeric hydrogel	Yes	Yes	Yes	This work
(benzo[d]thiazol-2-yl)-	(Fluorescent)				
4-					
hydroxyisophthalaldeh					
yde					

Reference

1. W. E. Smith, J. Org. Chem., 1972, 37, 3972-3973.

2. S. Lu, C. Gao, X. Xu, X. Bai, H. Duan, N. Gao, C. Feng, Y. Xiong and M. Liu, *ACS Appl. Mater. Interfaces.* 2015, **7**, 13029–13037.

3. G. Chang, Y. Chen, Y. Li, S. Li, F. Huang, Y. Shen and A. Xie, *Carbohydr. Polym.*, 2015, **122**, 336–342.

4. K. M. Park, S. Y. Lee, Y. K. Joung, J. S. Na, M. C. Lee, K. D. Park, Acta Biomater., 2009, 5, 1956–1965.

5. Y. Zhang, L. Tao, S. Li and Y. Wei, Biomacromolecules, 2011, 12, 2894–2901.

6. Z. Geng, H. Zhang, Q. Xiong, Y. Zhang, H. Zhao and G. Wang, J. Mater. Chem. A, 2015, **3**, 19455–19460.

7. C. Cheng, X. Zhang, Y. Meng, Z. Zhang, J. Chen and Q. Zhang, *Soft Matter*, 2017, **13**, 3003-3012.

8. A. Sachdev, I. Matai, P. Gopinath, Colloids Surf B Biointerfaces, 2016,141, 242–252.

9. D. Han and L. Yan, ACS Sustainable Chem. Eng., 2014, 2, 296-300.

- 10. P. Majumdar and J. Zhao, J. Phys. Chem. B, 2015, 119, 2384-2394.
- 11. J. Cheng, D. Liu, W. Li, L. Bao and K. Han, J. Phys. Chem. C, 2015, 119, 4242-4251.
- 12. S. Belali, G. Emandi, A. A. Cafolla, B. O'Connell, B. Haffner, M. E. Möbius, A. Karimi and
- M. O. Senge, Photochem. Photobiol. Sci., 2017, 16, 1700-1708.