Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Electronic Supplementary Information (ESI)

New Journal of Chemistry

Bis(picolinato) complexes of vanadium and zinc as potential antidiabetic agents: synthesis, structural elucidation and *in vitro* insulin-mimetic activity study

Tanja Koleša-Dobravc,^a Keiichi Maeshima,^b Yutaka Yoshikawa,^c Anton Meden,^a Hiroyuki Yasui,^b Franc Perdih^{a,*}

^a Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, P. O. Box 537, SI-1000 Ljubljana, Slovenia. E-mail: franc.perdih@fkkt.uni-lj.si

^b Department of Analytical and Bioinorganic Chemistry, Division of Analytical and Physical Chemistry, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan

^c Department of Health, Sports, and Nutrition, Faculty of Health and Welfare, Kobe Women's University, 4-7-2 Minatojima-nakamachi, Chuo-ku, Kobe, 650-0046, Japan

Supplementary material

Crystallographic data: Figs. S1–S9 and Tables S1–S10

Table S1: Selected crystallographic data for $NH_4[VO_2(picFF)_2] \cdot 1.6H_2O(3 \cdot 1.6H_2O)$ and $NH_4[VO_2(Hhypic)_2] \cdot H_2O(4 \cdot H_2O)$, $[Zn(picFF)_2(H_2O)_2](5)$,
$[Zn(picFF)_2(py)_2] \cdot py (6 \cdot py), [Zn(picFF)_2(DMAP)_2] \cdot \frac{2}{3}H_2O (7 \cdot \frac{2}{3}H_2O), [Zn(picFF)_2(phen)] \cdot CHCl_3 (8 \cdot CHCl_3), [Zn(Hhypic)_2(MeOH)_2] (10), [Zn(picFF)_2(phen)] \cdot CHCl_3 (8 \cdot CHCl_3), [Zn(PicFF)_2(p$
$[Zn(Hhypic)_2(DMAP)(H_2O)]$ (11) and $[Zn(Hhypic)_2(phen)]$ (12).

	3 ·1.6H ₂ O	$4 \cdot H_2O$	5	6 · py	$7 \cdot \frac{2}{3} H_2 O$	$8 \cdot \mathrm{CHCl}_3$
Formula	$C_{12}H_{11.2}F_4N_3O_{7.6}V$	$C_{12}H_{14}N_3O_9V$	$C_{12}H_8F_4N_2O_6Zn$	$C_{27}H_{19}F_4N_5O_4Zn$	$C_{78}H_{76}F_{12}N_{18}O_{14}Zn_3$	$C_{26}H_{14}Cl_6F_4N_4O_4Zn$
$M_{ m r}$	445.98	395.20	417.57	618.84	1913.67	800.48
<i>T</i> (K)	293(2)	293(2)	293(2)	293(2)	293(2)	293(2)
Crystal system	Tetragonal	Monoclinic	Triclinic	Monoclinic	Orthorhombic	Monoclinic
Space group	$P4_2/n$	C2/c	<i>P</i> -1	$P2_{1}/c$	Pbca	C2/c
<i>a</i> (Å)	21.5080(5)	8.0697(3)	6.5421(3)	18.0287(4)	26.2936(3)	12.9576(8)
<i>b</i> (Å)	21.5080(5)	13.0146(5)	6.9212(3)	10.3166(2)	24.3520(3)	28.0951(7)
<i>c</i> (Å)	7.9027(3)	15.4733(6)	8.7493(4)	14.9805(3)	26.5498(3)	10.7178(5)
α (°)	90.00	90.00	97.521(3)	90.00	90.00	90.00
β (°)	90.00	104.392(2)	101.906(2)	106.0220(10)	90.00	126.182(8)
γ (°)	90.00	90.00	114.749(3)	90.00	90.00	90.00
Volume (Å ³)	3655.7(2)	1574.07(10)	341.35(3)	2678.06(10)	16999.9(3)	3149.3(3)
Z	8	4	1	4	8	4
$D_{\rm c} ({\rm g/cm}^3)$	1.621	1.668	2.031	1.535	1.492	1.688
μ (mm ⁻¹)	0.620	0.686	1.888	0.988	0.939	1.353
Reflections collected	24513	3471	2783	11360	25088	14737
Reflections unique (R_{int})	4192 (0.0968)	1781 (0.0178)	1551 (0.0154)	6124 (0.0218)	13040 (0.0314)	3602 (0.0319)
Parameters	286	126	121	370	1138	232
$R, wR_2 \left[I \ge 2\sigma(I) \right]^a$	0.0938, 0.2439	0,0714, 0,1905	0.0268, 0.0698	0.0420, 0.1038	0.0486, 0.1178	0.0521, 0.1220
R , wR_2 (all data) ^{<i>a</i>}	0.1361, 0.2729	0,0766, 0,1929	0.0277, 0.0704	0.0685, 0.1180	0.0955, 0.1409	0.0699, 0.1335
GOF, S^b	1.024	1.170	1.133	1.020	1.006	1.053

 $\frac{1.021}{a R = \sum ||F_0| - |F_c|| / \sum |F_0|, wR_2} = \{\sum [w(F_0^2 - F_c^2)^2] / \sum [w(F_0^2)^2] \}^{1/2}. \ b S = \{\sum [(F_0^2 - F_c^2)^2] / (n/p) \}^{1/2}, where n is the number of reflections and p is the total number of parameters refined.$

Table S1: continuation.

	10	11	12
Formula	$C_{14}H_{16}N_2O_8Zn$	$C_{19}H_{20}N_4O_7Zn$	$C_{24}H_{16}N_4O_6Zn$
$M_{ m r}$	405.66	481.76	521.78
<i>T</i> (K)	150(2)	150(2)	150(2)
Crystal system	Monoclinic	Orthorhombic	Monoclinic
Space group	C2/c	Pnna	$P2_{1}/c$
a (Å)	19.6242(9)	7.9159(4)	14.0406(2)
<i>b</i> (Å)	6.4863(2)	18.3331(10)	10.5121(2)
<i>c</i> (Å)	15.5404(6)	13.4273(7)	13.9610(2)
α (°)	90.00	90,00	90.00
β (°)	126.316(6)	90,00	92.8360(10)
γ (°)	90.00	90,00	90.00
Volume (Å ³)	1593.89(15)	1948.61(18)	2058.07(6)
Z	4	4	4
$D_{\rm c} ({\rm g/cm}^3)$	1.690	1.642	1.684
$\mu (\mathrm{mm}^{-1})$	2.594	1.313	2.133
Reflections collected	3853	7918	17368
Reflections unique (R_{int})	1613 (0.0125)	2238 (0. 0278)	4199 (0.0272)
Parameters	121	149	318
$R, wR_2 [I \ge 2\sigma(I)]^a$	0.0274, 0.0757	0.0278, 0.0735	0.0265, 0.0683
R , wR_2 (all data) ^{<i>a</i>}	0.0283, 0.0763	0.0353, 0.0790	0.0300, 0.0709
GOF, S^b	1.073	1.045	1.033

 ${}^{a}R = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}|, wR_{2} = \{\sum [w(F_{o}^{2} - F_{c}^{2})^{2}] / \sum [w(F_{o}^{2})^{2}] \}^{1/2}. {}^{b}S = \{\sum [(F_{o}^{2} - F_{c}^{2})^{2}] / (n/p) \}^{1/2}, where n is the number of reflections and p is the total number of parameters refined.$

Figure S1: Hydrogen-bonding network in **3**·1.6H₂O. Dashed lines indicate N–H···O and O–H···O bonds. Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) x, y, z - 1; (iii) y, $-x + \frac{1}{2}$, $-z + \frac{1}{2}$.

<i>D</i> −H···A	d(<i>D</i> –H)	$d(H \cdots A)$	$d(D \cdots A)$	<(<i>D</i> HA)	Symmetry transformation of the acceptor
N3–H3A…O7	0.882(19)	2.05(3)	2.892(12)	160(5)	<i>x</i> , <i>y</i> , <i>z</i>
N3−H3 <i>B</i> ···O5	0.89(2)	2.05(3)	2.892(7)	158(5)	-x + 1, -y + 1, -z + 1
N3−H3 <i>C</i> ···O3	0.881(19)	1.95(2)	2.831(6)	174(5)	<i>x</i> , <i>y</i> , <i>z</i> – 1
N3−H3 <i>D</i> ···O1	0.880(19)	1.97(2)	2.848(6)	174(5)	<i>x</i> , <i>y</i> , <i>z</i>
C4–H4…O5	0.93	2.39	3.274(7)	158.0	$-y + \frac{1}{2}, x, -z + \frac{1}{2}$
С6-Н6…О2	0.93	2.50	3.340(8)	149.5	<i>x</i> , <i>y</i> , <i>z</i> – 1
C10-H10O4	0.93	2.53	3.353(8)	147.0	$-y + 1, x + \frac{1}{2}, z + \frac{1}{2}$
С12-Н12…О4	0.93	2.48	3.321(7)	151.2	<i>x</i> , <i>y</i> , <i>z</i> + 1

Table S2: Hydrogen bonds and other weak intermolecular interactions in $3.1.6H_2O$.

Figure S2: Hydrogen-bonding network in 4·H₂O. Dashed lines indicate N–H···O and O–H···O bonds. Symmetry codes: (i) $-x + \frac{1}{2}$, $y + \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) $-x + \frac{1}{2}$, $-y + \frac{1}{2}$, -z + 1; (iii) -x, y, $-z + \frac{1}{2}$; (iv) $x - \frac{1}{2}$, $y + \frac{1}{2}$, z.

Figure S3: A chain of $[VO_2(Hhypic)_2]^-$ anions in crystal structure of $4 \cdot H_2O$ connected by $\pi \cdots \pi$ interactions. Dashed lines indicate centroid-to-centroid distances. Symmetry code: (i) -x + 1, -y, -z + 1.

ם דיייע	d(D H)	$d(\mathbf{H}\cdots \mathbf{A})$	$d(D \dots A)$	$\langle DHA \rangle$	Symmetry transformation
D-II A	u(<i>D</i> =11)	u(II A)	$\mathbf{u}(D \mid A)$		of the acceptor
O3–H3…O2	0.82	1.87	2.593(6)	147.1	<i>x</i> , <i>y</i> , <i>z</i>
O5−H5A…O4	0.83(2)	2.160(16)	2.942(4)	158(4)	<i>x</i> , <i>y</i> , <i>z</i>
N2−H2A…O1	0.870(16)	2.40(3)	3.067(4)	134(4)	<i>x</i> , <i>y</i> , <i>z</i>
N2-H2A…O2	0.870(16)	2.415(14)	3.029(4)	128.0(14)	<i>x</i> , <i>y</i> , <i>z</i>
N2−H2B…O3	0.861(16)	2.57(3)	3.124(4)	123(3)	$x - \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$
N2−H2B…O4	0.861(16)	2.34(2)	2.963(7)	129(2)	$-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{1}{2}$
C4–H4…O4	0.93	2.53	3.094(6)	119.8	-x + 1, -y, -z + 1
С6-Н6…О2	0.93	2.45	3.285(7)	150.1	$x + \frac{1}{2}, y - \frac{1}{2}, z$

Table S3: Hydrogen bonds and other weak intermolecular interactions in 4·H₂O.

Table S4: Geometrical parameters (Å, °) for $\pi \cdots \pi$ stacking interactions in 4·H₂O.

CgI···CgJ	CgI···CgJ	α	β	CgI-Perp	Ring Slippage	Symmetry transformation of the acceptor
<i>Cg</i> 3 <i>Cg</i> 3	3.736(3)	0	2.46	-3.732(2)	0.160	-x + 1, -y, -z + 1

 $CgI \cdots CgJ$, α , β and CgI-Perp are, respectively, the centroid-to-centroid distance between rings I and J, the interring dihedral angle, slip angle and the perpendicular distance of CgI from ring CgJ. Cg3 is N1/C2–C6 ring centroid.

<i>D</i> −H··· <i>A</i>	d(<i>D</i> –H)	$d(H \cdots A)$	$d(D \cdots A)$	<(<i>D</i> HA)	Symmetry transformation of the acceptor
O3−H3A…O2	0.816(10)	2.052(12)	2.8486(18)	165(3)	-x+1, -y+2, -z+1
O3−H3A…F1	0.816(10)	2.44(2)	2.9389(19)	120(2)	-x + 1, -y + 2, -z + 1
O3−H3B…O2	0.818(10)	1.963(12)	2.7674(19)	168(3)	x - 1, y, z
$C4-H4\cdots F1$	0.93	2.53	3.297(3)	140	-x + 1, -y + 2, -z
$C6-H6\cdots F2$	0.93	2.41	3.237(3)	148	-x - 1, -y + 1, -z

Table S5: Hydrogen bonds and other weak intermolecular interactions in 5.

Table S6: Geometrical parameters (Å, °) for $\pi \cdots \pi$ stacking interactions in **5**.

CgI⋯CgJ	CgI⋯CgJ	α	β	CgI-Perp	Ring Slippage	Symmetry transformation of the acceptor
$Cg3\cdots Cg3$	3.6302(10)	0	23.20	-3.3366(7)	1.430	-x, -y + 1, -z

 $CgI \cdots CgJ$, α , β and CgI-Perp are, respectively, the centroid-to-centroid distance between rings I and J, the interring dihedral angle, slip angle and the perpendicular distance of CgI from ring CgJ. Cg3 is N1/C2–C6 ring centroid.

Figure S4: Formation of hydrogen-bonded layer in 6·py. Dashed lines indicate C–H···O/N/F interactions. Symmetry codes: (i) x, y = 1, z; (ii) x, y + 1, z; (iii) $x, -y + 2\frac{1}{2}, z + \frac{1}{2}$; (iv) $x, -y + 1\frac{1}{2}, z + \frac{1}{2}$.

Figure S5: Interactions between three adjacent molecules in $7 \cdot \frac{2}{3}H_2O$. Dashed lines indicate weak C-H··· π and π ··· π interactions. Symmetry codes: (i) x, $-y + \frac{1}{2}$, $z + \frac{1}{2}$; (ii) $-x + \frac{1}{2}$, $y + \frac{1}{2}$, z.

Figure S6: Crystal packing in 8·2CHCl₃. Dashed lines indicate of C–H···O and $\pi \cdots \pi$ interactions Symmetry codes: (i) $x, -y + 2, z + \frac{1}{2}$; (ii) $-x + 2, y, -z + \frac{1}{2}$; (iii) $-x + \frac{1}{2}, -y + \frac{1}{2}, -z$.

<i>D</i> –H···A	d(<i>D</i> –H)	d(H···A)	$d(D \cdots A)$	<(<i>D</i> HA)	Symmetry transformation of the acceptor
6 ·py					
C4–H4…O4	0.93	2.43	3.212(3)	142.3	<i>x</i> , <i>y</i> − 1, <i>z</i>
C14–H14…O2	0.93	2.59	3.500(4)	165.2	<i>x</i> , <i>y</i> + 1, <i>z</i>
C14–H14…F3	0.93	2.53	3.128(4)	121.9	$x, -y + 2^{1/2}, z + \frac{1}{2}$
C15–H15…N5	0.93	2.57	3.446(7)	157	$x, -y + \frac{1}{2}, z + \frac{1}{2}$
C21–H21…O4	0.93	2.50	3.291(3)	142.8	$x, -y + 1^{1/2}, z + \frac{1}{2}$
7 ·²⁄ ₃ H ₂ O					
C10–H10…O8	0.93	2.44	3.269(6)	148.1	$x - \frac{1}{2}, -y + \frac{1}{2}, -z + 1$
C14–H14…O12	0.93	2.45	3.312(6)	154.7	-x, -y + 1, -z + 1
C18–H18B…O13	0.96	2.60	3.529(8)	163.9	<i>x</i> , <i>y</i> , <i>z</i>
C23–H23…O8	0.93	2.49	3.391(5)	162.1	<i>x</i> , <i>y</i> , <i>z</i>
C26–H26A…F3	0.96	2.49	3.053(6)	117.0	$x + \frac{1}{2}, -y + \frac{1}{2}, -z + 1$
С56-Н56…Об	0.93	2.41	3.218(7)	145.1	<i>x</i> , <i>y</i> , <i>z</i>
С62-Н62…О13	0.93	2.53	3.374(9)	151.9	$x, -y + \frac{1}{2}, z - \frac{1}{2}$
С73–Н73…О2	0.93	2.52	3.344(5)	147.9	$x, -y + 1^{1/2}, z - \frac{1}{2}$
C21–H21…Cg18	0.93	2.90	3.701(5)	146	$x, -y + \frac{1}{2}, z + \frac{1}{2}$
C47–H47…Cg17	0.93	2.98	3.667(5)	132	$-x + \frac{1}{2}, -y + 1, z + \frac{1}{2}$
8·2CHCl ₃					
C4–H4…O2	0.93	2.56	3.351(5)	143.5	$x, -y + 2, z + \frac{1}{2}$
C13-H13…O1	0.98	2.57	3.388(5)	141.1	$-x + 2, y, -z + \frac{1}{2}$
C13–H13…O2	0.98	2.27	3.217(5)	162.8	$-x + 2, y, -z + \frac{1}{2}$

Table S7: Hydrogen bonds and other weak intermolecular interactions in $[Zn(picFF)_2(py)_2] \cdot py (\mathbf{6} \cdot py)$, $[Zn(picFF)_2(DMAP)_2] \cdot \frac{2}{3}H_2O (\mathbf{7} \cdot \frac{2}{3}H_2O)$, $[Zn(picFF)_2(phen)] \cdot 2CHCl_3 (\mathbf{8} \cdot 2CHCl_3)$.

Cg17 and Cg18 are N15/C65–C69 and N17/C72–C76 ring centroids, respectively.

Cal···Cal	Cal···Cal	a	ß	Cal-Pern	Ring Slippage	Symmetry transformation of the
Cgi Cgj	Cgi Cgj	a	ρ	Cgi-i cip	King Shippage	acceptor
6 ·py						
$Cg3\cdots Cg5$	4.0362(17)	11.82(15)	18.85	-3.6540(12)		$x, 1\frac{1}{2} - y, -\frac{1}{2} + z$
$Cg4\cdots Cg7$	4.170(3)	12.1(3)	31.47	-3.8915(11)		x, 1 + y, z
7 .²∕₃H₂O						
$Cg6\cdots Cg17$	3.917(2)	11.9(2)	23.84	3.5765(18)		$x, -y + \frac{1}{2}, z + \frac{1}{2}$
$8 \cdot 2 CHCl_3$						
$Cg5\cdots Cg5$	3.706(3)	0	10.45	-3,645(2)	1.430	$-x + 1\frac{1}{2}, -y + 1\frac{1}{2}, -z$
Col···Col a	B and Col-Pe	ern are resn	ectively	the centroid-to-	entroid distance h	petween rings I and I the in

Table S8: Geometrical parameters (Å, °) for $\pi \cdots \pi$ stacking interactions in [Zn(picFF)₂(py)₂]·py (6·py), [Zn(picFF)₂(DMAP)₂]·²/₃H₂O (7·²/₃H₂O), [Zn(picFF)₂(phen)]·2CHCl₃ (8·2CHCl₃).

 $CgI \cdots CgJ$, α , β and CgI-Perp are, respectively, the centroid-to-centroid distance between rings I and J, the interring dihedral angle, slip angle and the perpendicular distance of CgI from ring J. In **6**·py Cg3, Cg4, Cg5 and Cg7 are N1/C2–C6, N2/C8–C12, N3/C13–C17 and N7/C23–C27 ring centroids, respectively. In **7**·²/₃H₂O Cg6 and Cg17 are N5/C20–C24 and N15/C65–C69 ring centroids, respectively. In **8**·2CHCl₃ Cg5 is N2/C7–C11 ring centroid.

Figure S7: Hydrogen-bonding network in **10**. Dashed lines indicate O–H···O, C–H···O and C–H··· π interactions. Symmetry codes: (i) *x*, *y* + 1, *z*; (ii) *x*, –*y* + 2, *z* + $\frac{1}{2}$; (iii) –*x* + $\frac{1}{2}$, *y* + $\frac{1}{2}$, –*z* + $\frac{1}{2}$.

Figure S8: Hydrogen-bonding network in **11**. Dashed lines indicate $O-H\cdots O$ and $C-H\cdots O$ interactions.

Figure S9: Crystal packing in **12** facilitated by $\pi \cdots \pi$ interactions. Dashed lines indicate C–H···O and $\pi \cdots \pi$ interactions. Symmetry codes: (i) -x + 2, $y - \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) -x + 2, $y + \frac{1}{2}$, $-z + \frac{1}{2}$; (iii) -x + 1, $y + \frac{1}{2}$, $-z + \frac{1}{2}$; (iv) -x + 1, -y, -z + 1; (v) -x + 1, $y - \frac{1}{2}$, $-z + \frac{1}{2}$.

					Symmetry transformation
D–H···A	d(<i>D</i> –H)	d(H··· <i>A</i>)	$d(D \cdots A)$	<(<i>D</i> H <i>A</i>)	Symmetry transformation
	. ,	· · ·	· · · ·	· · ·	of the acceptor
10					
O3–H3…O2	0.84	1.84	2.5772(18)	146.1	<i>x</i> , <i>y</i> , <i>z</i>
O4−H4A····O2	0.849(16)	1.828(16)	2.6658(16)	169(2)	x, y + 1, z
С5-Н5…О4	0.95	2.44	3.3390(19)	158.0	$x, -y + 2, z + \frac{1}{2}$
С6–Н6··· <i>Cg</i> 3	0.95	3.00	3.653(2)	127	$-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{1}{2}$
11					
O3–H3···O2	0.84	1.80	2.5476(17)	146.7	<i>x</i> , <i>y</i> , <i>z</i>
O4–H4A…O1	0.825(9)	1.907(10)	2.7312(15)	176(2)	$x + \frac{1}{2}, y, -z$
С5-Н5…О2	0.95	2.57	3.224(2)	125.8	x + 1, y, z
С7–Н7⋯О3	0.95	2.56	3.245(2)	128.9	$x, -y + \frac{1}{2}, -z + \frac{1}{2}$
C10−H10··· <i>Cg</i> 4	0.95	2.97	3.827(2)	147	1 - x, 1 - y, 1 - z
12					
O3–H3…O2	0.84	1.79	2.5438(19)	147.6	<i>x</i> , <i>y</i> , <i>z</i>
O6−H6…O5	0.84	1.80	2.5438(19)	147.5	<i>x</i> , <i>y</i> , <i>z</i>
С10-Н10…Об	0.95	2.48	3.331(2)	148.5	-x + 2, -y + 1, -z + 1
C12–H12…O5	0.95	2.54	3.147(2)	122.1	$x, -y + \frac{1}{2}, z - \frac{1}{2}$
C20-H20···O1	0.95	2.33	3.176(2)	148	$-x + 1, y - \frac{1}{2}, -z + \frac{1}{2}$
С23-Н23…О4	0.95	2.57	3.332(2)	138	-x + 1, -y, -z + 1
C13–H13··· <i>Cg</i> 5	0.95	2.95	3.7459(19)	142	<i>x</i> , <i>y</i> , <i>z</i>
C22–H22··· <i>Cg</i> 4	0.95	2.91	3.6509(18)	135	<i>x</i> , <i>y</i> , <i>z</i>

Table S9: Hydrogen bonds and other weak intermolecular interactions in [Zn(Hhypic)₂(MeOH)₂] (10), [Zn(Hhypic)₂(DMAP)(H₂O)] (11) and [Zn(Hhypic)₂(phen)] (12).

For **10** and **12**: Cg3 and Cg4 are N1/C2–C6 ring centroids and Cg5 is N2/C8–C12 ring centroid. For **11**: Cg4 is N2/C7–C9/C8ⁱ/C7ⁱ ring centroid.

Table S10: Geometrical parameters (Å, °) for $\pi \cdots \pi$ stacking interactions in **12**.

CgI…CgJ	CgI…CgJ	α	β	CgI-Perp	Ring Slippage	Symmetry transformation of the acceptor
$Cg4\cdots Cg5$	3.8969(9)	18.62(8)	36.48	3.7054(6)		$-x + 2, y - \frac{1}{2}, -z + \frac{1}{2}$
$Cg6\cdots Cg7$	3.6668(9)	11.54(7)	14.67	-3.3233(6)		$-x + 1, y + \frac{1}{2}, -z + \frac{1}{2}$
$Cg6\cdots Cg8$	3.6168(9)	1.78(7)	19.91	3.3631(6)		-x + 1, -y, -z + 1
$Cg8\cdots Cg8$	3.5779(9)	0	18.19	3.3990(6)	1.117	-x + 1, -y, -z + 1

 $CgI \cdots CgJ$, α , β and CgI-Perp are, respectively, the centroid-to-centroid distance between rings I and J, the interring dihedral angle, slip angle and the perpendicular distance of CgI from ring CgJ. Cg4, Cg5, Cg6, Cg7 and Cg8 are N1/C2–C6, N2/C8–C12, N3/C13–C17, N4/C18–C22 in C16–C19/C24/C23 ring centroids, respectively.