Electronic Supplementary Material (ESI) for New Journal of Chemistry.

This journal is © The Royal Society of Chemistry and the Centre National de la

Recherche Scientifique 2017

Supporting Information for

Kinetics and mechanistic studies on the formation and reactivity of high valent MnO porphyrin species: mono-ortho or para-substituted porphyrins versus a di-ortho-substituted one

Rahele Nasrollahi and Saeed Zakavi*

^a Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran. E-mail:zakavi@iasbs.ac.ir.

S1. ¹H NMR, ¹³C NMR and UV-Vis spectral data of the porphyrins

Figure S1. UV-vis spectral changes upon the addition of TBAO to a solution of (ImH)Mn(TDCIPP)(OAc) in CH₂Cl₂ (4.5×10^{-5} M, red curve, $\lambda_{max} = 468$ nm) in 1:500 ratio of TBAO (blue curve, $\lambda_{max} = 421$ and 473 nm) and also in 1:1000 ratio (orange curve, $\lambda_{max} = 408$) molar ratios.

Figure S2. UV-vis spectral changes monitored upon the oxidation of a) indene b)cyclohexene c) cyclohexen (left to right) with[(ImH)Mn^V(O)(T2-Br)PP]⁺, [(ImH)Mn^V(O)(T2-CI)PP]⁺and [(ImH)Mn^V(O)(T2-Br)PP]⁺ respectively.

Figure S3. UV-vis spectral changes monitored upon the reaction of $[(ImH)Mn^{v}(O)(TDCIPP)]^{+}(4.5 \times 10^{-5} \text{ M})$ with 4-OMestyrene (2.25 × 10⁻³ M). 4-Mestyrene 4-Clstyrene

Figure S4. The change in the absorbance at 407 nm vs. time for the oxidation of styrene (0.45- 2.25×10^{-3} M) with [(ImH)Mn^V(O)T(DCI)PP]⁺.

Figure S5. The change in the absorbance at 407 nm vs. time for the oxidation of 4-OMestyrene, 4-Mestyrene, 4-Clstyrene (0.45-2.25 × 10-3 M) with (ImH)Mn^V(O)T(2,6-DCl)PP(OAc).

Scheme S1. Hydrogen bonds formed between the $Mn^{\nu}(O)$ porphyrins species and hydrogen bond donor molecules such as ImH and water molecules prevent the nucleophilic attack of the alkene π -orbital on the Mn=O moiety.

Figure S6. UV-vis spectral changes upon the oxidation of indene with [(ImH)Mn^V(O)T(DCI)PP]⁺ (λ_{max} = 417 nm).

Figure S7. a) UV-vis spectrum of Mn(TPP)(OAc) (λ max = 471 nm, black curve), and (ImH)(Mn^{III}(TPP), λ_{max} = 468 nm, red curve) and (ImH)Mn^V(O)(TPP) (λ max = 407 nm, blue curve) in CH₂Cl₂ b) UV-vis spectrum of Mn(TPP)(OAc) (λ max = 471 nm, black curve), and (Mn^{III}(TPP)(ImH), λ_{max} = 468 nm, red curve) in CH₂Cl₂ and UV-vis spectral changes upon the addition of TBAO during times. (decay at 474 nm for (ImH)Mn^{III}(OOSO₃H)P.

Figure S8. UV-vis spectral changes monitored upon the oxidation of a) aniline b) phenyl methyl sulfide c) toluen d) cyclohexan with (ImH)Mn^v(O)T(2,6-DCl)PP(OAc), (ImH)Mn^v(O)T(2-Me)PP, (ImH)Mn^v(O)T(2,6-DCl)PP(OAc), (ImH)Mn^v(O)T(2-Me)PP(OAc) respectively.

Figure S9. The oxidation of other organic compounds, with $(ImH)Mn^{\vee}(O)T(DCI)PP(OAc)$, $(ImH)Mn^{\vee}(O)T(2-Me)PP$, $(ImH)Mn^{\vee}(O)T(DCI)PP(OAc)$, $(ImH)Mn^{\vee}(O)T(2-Me)PP(OAc)$ respectively.

S.2 Instrumental

S.3 General oxidation procedure of alkenes

S.4 Competitive epoxidation of *cis*- and *trans*-stilbene

H₂TPP. ¹H NMR (400 MHz, CDCl₃, TMS), δ/ppm: -2.77 (2H, br, s, NH), 7.77-7.84 (8Hm and 4Hp, m), 8.26-8.27 (8Ho, d),8.90 (8Hβ, s); ¹³C NMR (~100 MHz, CDCl₃, TMS), δ/ppm: 120.18 (Cmeso), 142.20 (C1), 134.60 (C2, C6), 126.73 (C3, C5),127.75 (C4), 131.5 (Cβ); UV-vis in CH₂Cl₂, λ max/nm (logε): 417 (5.79), 513 (4.58), 548 (4.38), 590 (4.30), 647 (4.29).

H₂T(4-OMe)PP. ¹H NMR (400MHz, CDCl₃, TMS), δ/ppm: -2.72 (2H, br, s, NH), 7.29-7.32 (8Hm, d), 8.15-8.17 (8Ho, d), 8.89(8Hβ, s), 4.13 (12HMe, s); ¹³C NMR (~100MHz, CDCl₃, TMS), δ/ppm: 119.75 (Cmeso), 134.67 (C1), 135.62 (C2, C6), 112.20 (C3,C5), 159.39 (C4), 131.34 (Cβ), 55.61 (CMe); UV-vis in CH₂Cl₂, λ max/nm (logε)= 421 (5.61), 517 (4.32), 555 (4.22), 593 (4.06),651 (4.11).

H₂T(4-Me)PP. ¹H NMR (400 MHz, CDCl₃, TMS), δ/ppm: -2.76 (2H, br, s, NH), 7.55-7.58 (8Hm, d), 8.09-8.12 (8Ho, d), 8.86(8Hβ, s), 2.65 (12HMe, s); ¹³C NMR (~100 MHz, CDCl₃, TMS), δ/ppm: 120.47 (Cmeso), 139.73 (C1), 134.92 127.81 (C2, C6), (C3, C5), 137.71 (C4), 131.37 (Cβ), 21.57 (CMe); UV-vis in CH₂Cl₂, λmax/nm (logε): 418 (5.89), 516 (4.54), 551 (4.34), 590(4.18), 647 (4.20). **H₂T(2-Me)PP.** ¹H NMR (400 MHz, CDCl₃, TMS), δ/ppm: -2.59 (2H, br, s, NH), 7.54-7.74 (8Hm and 4Hp, m, meta and paraposition relative to C atom attached to meso position), 7.99-8.11 (4Ho, m, ortho-position relative to C atom attached to meso position), 8.70 (8Hβ, s), 2.01-2.11 (12HMe, m);); ¹³C NMR (~100 MHz, CDCl₃, TMS), δ/ppm: 118.82 (Cmeso), 139.54 (C1),139.63 (C2), 128.38 (C3), 129.22 (C4), 124.21 (C5), 133.90 (C6), 141.48 (Cα), 129.22 (Cβ), 21.37 (CMe); UV-vis in CH₂Cl₂,λmax/nm (logε): 416 (6.04), 512 (4.74), 545 (4.34), 589 (4.34), 645 (4.25).

H₂**T(2-Cl)PP.** ¹H NMR (400MHz, CDCl₃, TMS), δ/ppm: -2.62 (2H, br, s, NH), 7.66-7.87 (8Hm and 4Hp, m, meta and paraposition relative to C atom attached to meso position), 8.10-8.26 (4Ho, m, ortho-position relative to C atom attached to mesoposition), 8.72 (8Hβ, s); ¹³C NMR (~100 MHz, CDCl₃, TMS), δ/ppm: 116.76 (Cmeso), 137.10 (C1), 136.94 (C2), 129.01 (C3),129.93 (C4), 125.32 (C5), 135.52 (C6), 140.50 (Cα), 135.39 (Cβ); UV-vis in CH₂Cl₂, λ max/nm (logε): 416 (5.64), 512 (4.47), 543(4.07), 587 (4.15), 643 (3.96).

H₂T(2-Br)PP. ¹H NMR (400MHz, CDCl₃, TMS), δ/ppm: -2.6 (2H, br, s, NH), 7.67-7.76 (8Hm and 4Hp, m, meta and paraposition relative to C atom attached to meso position), 8.03-8.08 (4Ho, m, ortho-position relative to C atom attached to mesoposition), 8.71 (8Hβ, s); ¹³C NMR (~100 MHz, CDCl₃, TMS), δ/ppm: 118.60 (Cmeso), 142.50 (C1), 127.41 (C2), 130.03 (C3),127.57 (C4), 125.85 (C5), 135.27 (C6), 145.53 (Cα), 132.03 (Cβ).

H₂T(4-Cl)PP. ¹H NMR (400 MHz, CDCl₃, TMS), δ/ppm: -2.83 (2H, br, s, NH), 7.77-7.79 (8Hm, d), 8.15-8.17 (8Ho, d), 8.87(8Hβ, s); ¹³C NMR (~100 MHz, CDCl₃, TMS), δ/ppm: 119.01 (Cmeso), 140.37 (C1), 135.52 (C2, C6), 127.07 (C3, C5), 134.41(C4), 131.64 (Cβ); UV-vis in CH₂Cl₂, λ max/nm (logε): 418 (5.79), 513 (4.52), 547 (4.25), 590 (4.16), 647 (4.10).

H₂T(2-NO₂)PP. ¹H NMR (400 MHz, DMSO-d6, TMS), δ/ppm: - 2.83 (s, 2H, NH), 8.61 (s, 8H, Hβ), 8.30 (m, 4H, Ho), 8.45 (m,8H, Hm), 7.98 (m, 4H, Hp); UV-vis in CH₂Cl₂, λmax/nm (logε): (See ESI,[†] S3-1).

H₂**T(2,6-CI)PP.** ¹H NMR (400 MHz, CDCl₃, TMS), δ/ppm: -2.59 (2H, br, s, NH), 7.68 (12H, m, Hm,p), 8.66 (8H, s, Hβ,); UVvis in CH₂Cl₂, λmax/nm (logε): (See ESI,[†] S3-1).

H₂T(4-py)PP. ¹H NMR (400 MHz CDCl₃,):δ/ppm-2.93 (2H, br, s, NH),8.15–8.17 (8Hm, dd), 9.06– 9.07 (8Ho, dd), 7.90 (4H, m), 8.87 (8H,s); UV–Vis (/nm) in CH₂Cl₂: 418 (Soret), 512, 547, 588, 646.

Figure S1. UV-vis spectral changes upon the addition of TBAO to a solution of (ImH)Mn(TDCIPP)(OAc) in CH₂Cl₂ (4.5×10^{-5} M, red curve, $\lambda_{max} = 468$ nm) in 1:500 ratio of TBAO (blue curve, $\lambda_{max} = 421$ and 473 nm) and also in 1:1000 ratio (orange curve, $\lambda_{max} = 408$) molar ratios.

Figure S2. UV-vis spectral changes monitored upon the oxidation of a) indene b)cyclohexene c) cyclohexen (left to right) with[(ImH)Mn^V(O)(T2-Br)PP]⁺, [(ImH)Mn^V(O)(T2-Cl)PP]⁺and [(ImH)Mn^V(O)(T2-Br)PP]⁺ respectively.

Figure S3. UV-vis spectral changes monitored upon the reaction of $[(ImH)Mn^{\vee}(O)(TDCIPP)]^{+}(4.5 \times 10^{-5} \text{ M})$ with 4-OMestyrene (2.25 × 10⁻³ M). 4-Mestyrene 4-Clstyrene

Figure S4. The change in the absorbance at 407 nm vs. time for the oxidation of styrene (0.45- 2.25×10^{-3} M) with [(ImH)Mn^V(O)T(DCI)PP]⁺

Figure S5. The change in the absorbance at 407 nm vs. time for the oxidation of 4-OMestyrene, 4-Mestyrene, 4-Clstyrene $(0.45-2.25 \times 10-3 \text{ M})$ with (ImH)Mn^V(O)T(2,6-DCl)PP(OAc).

Scheme S1. Hydrogen bonds formed between the $Mn^{V}(O)$ porphyrins species and hydrogen bond donor molecules such as ImH and water molecules prevent the nucleophilic attack of the alkene π -orbital on the Mn=O moiety.

Figure S6. UV-vis spectral changes upon the oxidation of indene with [(ImH)Mn^V(O)T(DCI)PP]⁺ ($\lambda_{max} = 417 \text{ nm}$).

Figure S7. a) UV-vis spectrum of Mn(TPP)(OAc) ($\lambda_{max} = 471$ nm, black curve), and (ImH)(Mn^{III}(TPP), $\lambda_{max} = 468$ nm, red curve) and (ImH)Mn^V(O)(TPP) ($\lambda_{max} = 407$ nm, blue curve) in CH₂Cl₂ b) UV-vis spectrum of Mn(TPP)(OAc) ($\lambda_{max} = 471$ nm, black curve), and (Mn^{III}(TPP)(ImH), $\lambda_{max} = 468$ nm, red curve) in CH₂Cl₂ and UV-vis spectral changes upon the addition of TBAO during times. (decay at 474 nm for (ImH)Mn^{III}(OOSO₃H)P.

Figure S8. UV-vis spectral changes monitored upon the oxidation of a) aniline b) phenyl methyl sulfide c) toluen d) cyclohexan with (ImH)Mn^v(O)T(2,6-DCI)PP(OAc), (ImH)Mn^v(O)T(2-Me)PP, (ImH)Mn^v(O)T(2,6-DCI)PP(OAc), (ImH)Mn^v(O)T(2-Me)PP(OAc) respectively.

Figure S9. The oxidation of other organic compounds, with (ImH)Mn^V(O)T(DCI)PP(OAc), (ImH)Mn^V(O)T(2-Me)PP, (ImH)Mn^V(O)T(DCI)PP(OAc), (ImH)Mn^V(O)T(2-Me)PP(OAc) respectively (see also Figure S8).

S.2 Instrumental

UV-vis spectral studies were carried out using a Pharmacia Biotech Ultrospec 4000 UV-Vis spectrophotometer. ¹H NMR spectra were obtained on a BrukerAvance DPX-400 MHz spectrometer. The reaction products were analyzed by a Varian-3800 gas chromatograph equipped with a HP-5 capillary column and flame-ionization detector using authentic samples to identify the oxidation products.

S.3 General oxidation procedure of alkenes

In a typical reaction, ImH (4.5 × 10⁻⁴ M in CH₂Cl₂) was added to the solution of Mnporphyrins (4.5 × 10⁻⁵ M) to achieve the desired molar ratio of catalyst to ImH (1:15). The solution was stirred for 5 min before the addition of oxidant. TBAO (4.5 × 10⁻² M) was added to this solution until all of MnT(DCl)PP(OAc) was converted to Mn^V(O); the formation of the high valentMn(O) species completed at 1:1000 molar ratio of catalyst to TBAO. The oxidation reaction was conducted by addition of excess amounts of the organic substrate to meet pseudo-first order conditions (0.45 × 10⁻³ M to 2.25 × 10⁻³ M). The observed rate constants (k_{obs}) have been determined using different concentrations of substrate and a nonlinear curve fitting [A_t = A_f + (A₀ – A_f)exp(-k_{obs}t)]. Each experiment was triplicated. All experiments were carried out in CH₂Cl₂ and a 1.0 cm glass cell at 273 K. The progress of reaction products were analyzed by GC. Also, control reactions conducted in CCl₄ were utilized to characterize the product directly by ¹H NMR. The oxidation of styrenes, cyclohexene and indene gave the corresponding epoxide as the sole product.

S.4 Competitive epoxidation of cis- and trans-stilbene

For the competitive oxidation of stilbenes, MnT(DCI)PP (OAc), ImH, (*cis*- and *trans*stilbene) and TBAO were used in 1:15:(500,500):1000 molar ratio. In a typical reaction, MnT(DCI)PP(OAc) (7.5×10^{-4} mmol), ImH (1.125×10^{-2} mmol)*cis*-stilbene (0.375 mmol), *trans*-stilbene (0.375mmol) and TBAO (7.5×10^{-2} mmol) were added to a 5 ml round bottom flask containing 2 ml CCl₄ and magnetically stirred for 30 min. The reaction mixture was directly analyzed by ¹H NMR to determine the cis- to trans oxide molar ratio. Also, the reaction was conducted using the 1:15:(500,500):200 molar ratio using 7.5×10^{-4} mmol MnT(DCl)PP(OAc), 1.125×10^{-2} mmolImH, 0.375mmolstilbenes and 1.5×10^{-2} mmol TBAO.