Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

New Journal of Chemistry

ELECTRONIC SUPPORTING INFORMATION (ESI)

Pd supported on g-C₃N₄ nanosheets: Mott-Schottky heterojunction catalyst for transfer hydrogenation of nitroarenes using formic acid as hydrogen source

Saisai Cheng^a, Xufeng Meng^a, Ningzhao Shang, Shutao Gao, Cheng Feng^{*}, Chun Wang^{*}, Zhi Wang

College of Science, Hebei Agricultural University, Baoding 071001, China

Fig. S1 Mott-Schottky effect on the catalytic performance of the Pd@g-C₃N₄ NS catalysts. (A) N 1s of Pd@g-C₃N₄ NS, (B) Pd XPS spectra of Pd@g-C₃N₄ NS and Pd@C-72R and (C) Schematic illustration of Mott-Schottky-type contact of Pd@g-C₃N₄ NS.

Fig. S2 The EDX mapping of the synthesized $Pd@g-C_3N_4 NS (A)$ and EDX image of $Pd@g-C_3N_4 NS (B)$.

Fig. S3 TEM images (A), Pd particle-size distribution (B), Pd XPS spectra (C), XRD pattern (D) of recycled catalyst.

Fig. S4 TOF values of FA for transfer hydrogenation of nitrobenzene over $Pd@g-C_3N_4$, $Pd@g-C_3N_4$ NS, $Pd@mpg-C_3N_4$, $Pd@boll-C_3N_4$ and Pd@C(commercially available). Reaction condition: water

Fig. S5 The kinetic curves of the catalytic transfer hydrogenation of nitrobenzene at different reaction temperatures. Reaction conditions: nitrobenzene (1 mmol), $Pd@C_3N_4$ NS (0.155 mol%), water (5 mL), FA (5 mmol).

	Entry	FA (mmol)	Time (min)	Conversion (%)	Selectivity (%)		
•	1	0	12 h	0	0		
	2	1	30	62	95		
	3	3	30	84	98		
	4	5	10	100	>99		
	5	7	8	100	>99		

Table S1 Reduction of nitrobenzene to aniline with different amount of formic acid over $Pd@g-C_3N_4$ NS catalyst.^[a]

[a] Reaction conditions: nitrobenzene (1 mmol), Pd@g-C₃N₄ NS (0.75 mol%), water (5 mL), 25 °C. GC

analysis using *n*-decane as an internal standard.

Entry	Catalyst	Hydrogen source	Temp (°C)	Time (h)	TOF[h ⁻¹] ^[a]	Ref
1	Pd/CN-PC ^[a]	НСООН	25	0.08-4	15-775	1
2	Au/rutile	НСООН	60	0.67-4	25-149	2
3	$[Mo_3S_4H_3(dmpe)_3]BPh_4^{[b]}$	HCOOH-Et ₃ N	70	18	0.54-1.85	3
4	Fe ₂ O ₃ /NGr@C	HCOOH-Et ₃ N	120	20-24	0.74-0.95	4
5	γ -Fe ₂ O ₃ @HAP-Pd ^[c]	HCOONH ₄	60	3	35-30	5
6	Fe(BF ₄) ₂ ·6H ₂ O/PP ₃	НСООН	40	1	100	6
7	Fe-MMIO ^[d]	НСООН	70	0.67-1	20-25	7
8	Pd@g-C ₃ N ₄ NS	НСООН	25	0.17-4.5	24-1313	This work

Table S2 Various reported catalyst tested for reduction of nitroarenes into anilines.

[a] Pd/CN-PC = The Pd/CN-fresh sample was also reduced under the irradiation of commercial lamp

(15 W) for one week at room temperature.

[b] dmpe =1,2-(bis)dimethylphosphinoethane.

[c] HAP = hydroxyapatite.

[d] MMIO = micro-mesoporous iron oxide.

References

- 1. X. H. Li, Y. Y. Cai, L. H. Gong, W. Fu, K. X. Wang, H. L. Bao, X. Wei and J. S. Chen, *Chem. Eur. J.*, 2014, **20**, 16732-16737.
- 2. L. Yu, Q. Zhang, S. S. Li, J. Huang, Y. M. Liu, H. Y. He and Y. Cao, *ChemSusChem*, 2015, **8**, 3029-3035.
- 3. I. Sorribes, G. Wienhofer, C. Vicent, K. Junge, R. Llusar and M. Beller, *Angew. Chem. Int. Ed. Engl.*, 2012, **51**, 7794-7798.
- 4. R. V. Jagadeesh, K. Natte, H. Junge and M. Beller, ACS Catal., 2015, 5, 1526-1529.
- 5. P. Zhou, D. Li, S. Jin, S. Chen and Z. Zhang, Int. J. Hydrogen Energy, 2016, 41, 15218-15224.
- 6. G. Wienhofer, I. Sorribes, A. Boddien, F. Westerhaus, K. Junge, H. Junge, R. Llusar and M. Beller, *J. Am. Chem. Soc.*, 2011, **133**, 12875-12879.
- 7. K. J. Datta, A. K. Rathi, M. B. Gawande, V. Ranc, G. Zoppellaro, R. S. Varma and R. Zboril, *ChemCatChem*, 2016, **8**, 2351-2355.