## SUPPORTING INFORMATION

# Supported sub-nanometer Ta oxide clusters as model catalysts for the selective epoxidation of cyclooctene

G. Zwaschka,<sup>a</sup> M.Rondelli,<sup>a</sup> M. Krause,<sup>a</sup> M.D. Rötzer,<sup>a</sup> M.N. Hedhili,<sup>b</sup> U. Heiz,<sup>a</sup> J.-M. Basset,<sup>c</sup>

F.F. Schweinberger,<sup>a\*</sup> and V. D'Elia<sup>c,d</sup>

### Table of content

| Additional Data for Sample Preparation and Characterization | page   |
|-------------------------------------------------------------|--------|
| 2                                                           |        |
| Additional Data for the Catalysis Experiments               | page 6 |
| Supporting References                                       | page   |
| 11                                                          |        |

Present addresses:

<sup>&</sup>lt;sup>a.</sup> Technical University of Munich, Catalysis Research Center and Chemistry Department, Chair of Physical Chemistry, Ernst-Otto-Fischer-Straße 1 and Lichtenbergstraße 4, 85748 Garching, Germany.

<sup>&</sup>lt;sup>b.</sup> King Abdullah University of Science and Technology (KAUST), Imaging and Characterization Core Lab, Thuwal 23955-6900, Kingdom of Saudi Arabia.

<sup>&</sup>lt;sup>c.</sup> King Abdullah University of Science and Technology (KAUST), Kaust Catalysis Center (KCC), Thuwal 23955-6900, Kingdom of Saudi Arabia.

<sup>&</sup>lt;sup>d.</sup> Vidyasirimedhi Institute of Science and Technology (VISTEC), Faculty of Materials Science and Engineering, 21210, Payupnai, WangChan, Rayong, Thailand.

Gregor Zwaschka, Fritz-Haber-Institute of the Max-Planck-Society – Department of Physical Chemistry, Interfacial Molecular Spectroscopy Group, Faradayweg 4-6, 14195 Berlin, Germany; Manuel Rondelli, Universität Basel, University of Basel - Department of Chemistry, Tiefenbacher Group, St. Johannesring 19, CH-4056 Basel, Switzerland; Florian Schweinberger, Roche Diagnostics GmbH, Centralised and Point of Care Solutions, DXRESI7F6164, Staffelseestrasse 6, 81477 Munich, Germany.

#### 1. Additional Data for Sample Preparation and Characterization



**Figure S1:** Mass scans over  $Ta_n^+$  cluster beam as selected by the QMS. The same setting for both samples was used, the only difference being, that for the atom the QMS was used employing the RF, while turning it off for the unselected clusters. The mass scan shows  $Ta_7$  as the most abundant cluster size for  $Ta_{n>1}$ .



**Figure S2**: Representative Scanning Transmission Electron Micrograph (STEM) of a larger overview area of a  $Ta_{n>1}$  cluster sample. The cluster and atoms are evenly distributed on the surface and show in the case of the clusters a homogeneous size distribution. To achieve high magnification, a large amount of energy was introduced into the sample consequently some particle fragmentation occurred (e.g. upper left, subfigure a).



**Figure S3:** XP spectra of the samples on which differently sized Ta cluster catalysts were deposited, (a) survey spectra of Ta<sub>1</sub>, Ta<sub>n>1</sub> and a blank sample before the reaction and (b) after the reaction. The spectra of Ta<sub>1</sub> and Ta<sub>n>1</sub> are offset for better visibility. For all samples the presence of the expected elements from the support (Si, O) and the ubiquitous impurity C is observed; Ta exhibits 4s, 4d and 4f peaks in the investigated region. The only noticeable qualitative change from (a) to (b) is the nearly complete disappearance of the Ta  $4d_{5/2}$  and  $4d_{3/2}$  peaks for Ta<sub>n>1</sub>. Additionally, some peaks have changed in intensity: the O KLL Auger transition and the C 1s and O 2s peaks.



**Figure S4:** XP spectra of the samples on which differently sized Ta cluster catalysts were collected after one catalytic reaction cycle of 48 h, (a) survey spectra including a blank sample in the BE region 0-400 eV (for full spectra see fig. S3) and (b) excerpts of the Ta 4d region together with literature values for bulk TaO<sub>2</sub> and Ta<sub>2</sub>O<sub>5</sub> (both,  $4d_{5/2}$  and  $4d_{3/2}$  peaks) represented as dotted lines. For all samples in the survey spectra (a) the presence of the expected elements from the support (Si, O) and the ubiquitous impurity C is observed; Ta exhibits 4d and 4f peaks in the investigated region. (b) Excerpts are shown of the Ta 4d region (because the Ta 4f peaks are superimposed by the O 2s peak) and show residual tantalum oxide species. For better visibility, the intensity signals of the data are plotted in arbitrary units (a.u.).

 Table S1: Surface composition in % as determined by XPS for both catalyst samples.

| Element /%           | С     | 0     | Si    | Та     | Si/Ta |
|----------------------|-------|-------|-------|--------|-------|
|                      |       |       |       |        |       |
| Ta <sub>1</sub>      | 12.64 | 52.48 | 34.87 | 0.0146 | 2388  |
| Ta <sub>n&gt;1</sub> | 16.18 | 54.22 | 29.09 | 0.515  | 56    |

#### 2. Additional Data for the Catalysis Experiments



**Figure S5:** Representative <sup>1</sup>H-NMR spectrum – peak assignment for the starting material<sup>1</sup> and product,<sup>2</sup> as well as for acetonitrile and diethyl ether (solvent of the reaction and the work-up, respectively). The shown spectrum is the result of a successful catalysis experiment with  $Ta_1$  clusters (COO stands for cycloocteneoxide and CO for cyclooctene).



**Figure S6**: Representative GC chromatograms of a)  $Ta_1$  and b)  $Ta_{n>1}$  product solutions: cycloocteneoxide (product), cyclooctene (starting material), acetonitrile (solvent) and cyclooctane (an impurity of the starting material) were detected. The measurement extends to 30 min, but no peaks appear after the product.



**Figure S7**: GC chromatogram of the reaction of cyclohexene epoxidation using Ta<sub>1</sub> as the catalyst. (Cyclohexene: retention time: 1.98 min; Area: 4082392; Cyclohexene oxide: retention time: 3.15 min; Area: 668528; 2-Cyclohexen-1-on: retention time: 3.93 min; Area: 183828; Cyclohexane-1,2-diol: retention time: 5.46 min; Area: 934089).

 Table S2: Raw GCMS data for the different samples based on the averaged results of multiple samples; (COO stands for cycloocteneoxide).

| Sample                           | Raw GCMS (total<br>number of COO<br>molecules after<br>48 h) | GCMS corrected for<br>blank performance<br>(total number of<br>COO molecules<br>after 48 h) | COO molecules per<br>atom or clusters<br>(incl. coverage<br>correction) | TOF<br>(molecules per hour<br>and cluster;<br>averaged over 48 h)<br>/ h <sup>-1</sup> |
|----------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| blank (chip without<br>clusters) | 6.13 ±0.63 *10 <sup>19</sup>                                 | -                                                                                           | -                                                                       | -                                                                                      |
| Ta <sub>1</sub>                  | 2.47 ±0.42 *10 <sup>20</sup>                                 | 1.86 ±0.42 *10 <sup>20</sup>                                                                | 8.25 ±0.85 *10 <sup>6</sup>                                             | 1.72 ±0.39 *10 <sup>5</sup>                                                            |
| Ta <sub>n&gt;1</sub>             | 1.20 ±0.21 *10 <sup>20</sup>                                 | 5.83 ±2.10 *10 <sup>19</sup>                                                                | 2.00 ±0.34 *10 <sup>6</sup>                                             | 0.42 ±0.07 *10 <sup>5</sup>                                                            |

**Table S3:** Raw GCMS values for recycling experiments using the same Ta<sub>1</sub> sample (errors for each run from multiple GC-MS measurement); (COO stands for cycloocteneoxide).

| Sample                           | Raw GCMS (total<br>number of COO<br>molecules after<br>48 h) | GCMS corrected for<br>blank performance<br>(total number of<br>COO molecules<br>after 48 h) | COO molecules per<br>atom (incl. coverage<br>correction) | TOF<br>(molecules per hour<br>and cluster;<br>averaged over 48 h)<br>/ h <sup>-1</sup> |
|----------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------|
| blank (chip without<br>clusters) | 6.13 ±0.63 *10 <sup>19</sup>                                 | -                                                                                           | -                                                        | -                                                                                      |
| Run 1                            | 2.89 ±0.02 *10 <sup>20</sup>                                 | 2.27 ±0.07 *10 <sup>20</sup>                                                                | 10.11 ±0.03 *10 <sup>6</sup>                             | 2.11 ±0.06 *10 <sup>5</sup>                                                            |
| Run 2                            | 1.60 ±0.04 *10 <sup>20</sup>                                 | 1.00 ±0.07 *10 <sup>20</sup>                                                                | 4.45 ±0.03 *10 <sup>6</sup>                              | 0.93 ±0.07 *10 <sup>5</sup>                                                            |
| Run 3                            | 0.93 ±0.08 *10 <sup>20</sup>                                 | 0.31 ±0.10 *10 <sup>20</sup>                                                                | 1.38 ±0.05 *10 <sup>6</sup>                              | 0.29 ±0.10 *10 <sup>5</sup>                                                            |

**Table S4:** Raw GCMS values for the 'hot filtration test' for  $Ta_{n>1}$  (COO stands for cycloocteneoxide).

| Sample                              | Raw GCMS (total<br>number of COO<br>molecules after 48 h) | GCMS corrected for<br>blank performance<br>(total number of COO<br>molecules after 48 h) | COO molecules per<br>clusters (incl.<br>coverage correction) | TOF (molecules per<br>hour and cluster;<br>averaged over<br>48 h) / h <sup>-1</sup> |
|-------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------|
| blank (chip<br>without<br>clusters) | 6.21 ±0.76 *10 <sup>19</sup>                              | -                                                                                        | -                                                            | -                                                                                   |
| 'homogeneous'                       | 1.18 ±0.20 *10 <sup>20</sup>                              | 5.63 ±2.14 *10 <sup>19</sup>                                                             | 1.25 ±0.48 *10 <sup>6</sup>                                  | 2.61 ±0.99 *10 <sup>4</sup>                                                         |
| 'heterogeneous'                     | 1.39 ±0.06 *10 <sup>20</sup>                              | 7.70 ±0.95 *10 <sup>19</sup>                                                             | 1.71 ±0.21 *10 <sup>6</sup>                                  | 3.56 ±0.44 *10 <sup>4</sup>                                                         |

The results in Table S4 show that the "homogeneous" and the "heterogeneous" experiments lead to the formation of a comparable amount of molecules of cycloocteneoxide. This observation suggests that a) catalytically active species remain on the surface of  $Ta_{n>1}$  after treatment for 48 h under the reaction conditions b) the  $Ta_{n>1}$  is prone to leaching after prolonged exposure to the reaction conditions. The impact of the leached tantalum species on the catalytic activity of  $Ta_{n>1}$  is likely to be overestimated with respect to a regular catalysis experiment because in the "hot filtration" test the sample was kept 48 h under the reaction conditions prior to the addition of  $H_2O_2$ .

**Table S5.** Comparison of catalytic performance (TON, TOF) between  $Ta_1$  and literature reported catalysts for the epoxidation of cyclooctene using  $H_2O_2$  as oxidant (all catalysts in the table have a selectivity above 90%).

| Entry | Catalyst                                                                                           | Conditions<br>(T, time) | TON/TOF(h <sup>-1</sup> ), <sup>a</sup><br>(Yield or<br>conversion (%)) | Catalyst Description                                                                                   | Ref.         |
|-------|----------------------------------------------------------------------------------------------------|-------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------|
| 1     | Ta <sub>1</sub>                                                                                    | 60 °C, 48 h             | 8.25*10 <sup>6</sup> /<br>1.72 *10 <sup>5</sup> (10)                    | Ligand-free isolated, oxidized<br>Ta(V) atoms                                                          | This<br>work |
| 2     | Ta-calixarene@SiO <sub>2</sub>                                                                     | 60 °C, 2 h              | 105/57.5, (12)                                                          | Isolated Ta atoms with calixarene ligands.                                                             | 3            |
| 3     | TaO <sub>x</sub> clusters                                                                          | 60 °C, 2 h              | 83/41.5, (8)                                                            | Ligand-free TaO <sub>x</sub> clusters                                                                  | 3            |
| 4     | Ta <sub>x</sub> N <sub>y</sub> /TaO <sub>x</sub> N <sub>y</sub> /SiO <sub>2</sub><br>(0.2 wt.% Ta) | 60 °C, 18 h             | 1395/77.5,<br>(24)                                                      | 0.5-3 nm Ta <sub>x</sub> N <sub>y</sub> and TaO <sub>x</sub> N <sub>y</sub><br>NPs supported on silica | 4            |
| 5     | $Ta_xN_y/TaO_xN_y/SiO_2$ (3.5 wt.% Ta)                                                             | 60 °C, 18 h             | ≈350/≈19.4,<br>(≈100)                                                   | 0.5-3 nm Ta <sub>x</sub> N <sub>y</sub> and TaO <sub>x</sub> N <sub>y</sub><br>NPs supported on silica | 4            |
| 6     | 1 wt.% Ta@CMK-1 <sup>b</sup>                                                                       | 65 °C, 24 h             | 760/31.7                                                                | $Ta_2O_5$ on carbon support                                                                            | 5            |
| 7     | Ta <sub>2</sub> O <sub>5</sub> NPs                                                                 | 60 °C, 18 h             | 21.7º/1.2, (57)                                                         | Ta <sub>2</sub> O <sub>5</sub> NPs (20-25 nm)                                                          | 6            |
| 8     | TaON NPs                                                                                           | 60 °C, 18 h             | 34.6 <sup>d</sup> /1.9, (96)                                            | TaON NPs (20-25 nm)                                                                                    | 6            |
| 9     | PW@HMP(3) <sup>f</sup>                                                                             | 60 °C, 4 h              | 592/148                                                                 |                                                                                                        | 7            |
| 10    | Ti@MFI zeolite                                                                                     | 60 °C, 2 h              | 54/27                                                                   |                                                                                                        | 8            |
| 11    | WO <sub>3</sub> nanoparticles                                                                      | 80 °C, 4 h              | 560/140                                                                 |                                                                                                        | 9            |
| 12    | MoO <sub>2</sub> @TiO <sub>2</sub>                                                                 | 70 °C, 6 h              | 3333/556                                                                |                                                                                                        | 10           |
| 13    | W–Zn@SnO2                                                                                          | 80 °C, 6 h              | 650/108                                                                 |                                                                                                        | 11           |
| 14    | Ga <sub>2</sub> O <sub>3</sub> -nanorods                                                           | 80 °C, 4 h              | 266/66.5                                                                |                                                                                                        | 12           |
| 15    | Gd <sub>26</sub> clusters framework                                                                | 68 °C, 24 h             | 2.94*10 <sup>4</sup> /1239 <sup>g</sup>                                 |                                                                                                        | 13           |
| 16    | Mesoporous Nb silicate                                                                             | 50 °C, 2 h              | 50/25                                                                   |                                                                                                        | 14           |

<sup>a</sup> Averaged over the whole reaction time. <sup>b</sup> CMK: Ordered mesoporous carbon. <sup>c</sup> Calculated on the basis of the following published data: Use of  $Ta_2O_5$  (40.0 mg, 0.09 mmol; 0.18 mmol of tantalum) for the conversion of cyclooctene (0.92 mL; 6.84 mmol) with a yield of cycloocteneoxide of 57% (3.90 mmol). <sup>d</sup> Calculated on the basis of the following published data: Use of TaON (40.0 mg, 0.19 mmol; 0.19 mmol of tantalum) for the conversion of cyclooctene (0.92 mL; 6.84 mmol) with a yield of cycloocteneoxide of 96% (6.57 mmol). <sup>e</sup> Homogeneous catalyst. <sup>f</sup> Polytungstic acid supported on hierarchical meso-macroporous poly(ionic liquids). <sup>g</sup> Using <sup>t</sup>BuOOH as an oxidant.

#### 3. Supporting References

- 1. J. Broggi, V. Jurčík, O. Songis, A. Poater, L. Cavallo, A. M. Z. Slawin and C. S. J. Cazin, *J. Am. Chem. Soc.*, 2013, **135**, 4588-4591.
- 2. T. Chishiro, Y. Kon, T. Nakashima, M. Goto and K. Sato, *Adv. Synth. Catal.*, 2014, **356**, 623-627.
- 3. N. Morlanes and J. M. Notestein, Appl. Catal. A: Gen., 2010, 387, 45-54.
- J. C. Mohandas, E. Abou-Hamad, E. Callens, M. K. Samantaray, D. Gajan, A. Gurinov, T. Ma, S. Ould-Chikh, A. S. Hoffman, B. C. Gates and J.-M. Basset, *Chem. Sci.*, 2017, 8, 5650-5661.
- 5. M.-L. Lin, K. Hara, Y. Okubo, M. Yanagi, H. Nambu and A. Fukuoka, *Catal. Commun.*, 2011, **12**, 1228-1230.
- 6. Q. Gao, S. Wang, Y. Ma, Y. Tang, C. Giordano and M. Antonietti, *Angew. Chem., Int. Ed.*, 2012, **51**, 961-965.
- 7. C. Gao, G. Chen, X. Wang, J. Li, Y. Zhou and J. Wang, *Chem. Commun.*, 2015, **51**, 4969-4972.
- 8. J. Kim, J. Chun and R. Ryoo, *Chem. Commun.*, 2015, **51**, 13102-13105.
- 9. C. Hammond, J. Straus, M. Righettoni, S. E. Pratsinis and I. Hermans, ACS Catal. 2013, **3**, 321-327.
- 10. M. Jafarpour, A. Rezaeifard, M. Ghahramaninezhad and F. Feizpour, *Green Chem.*, 2015, **17**, 442-452.
- 11. K. Kamata, K. Yonehara, Y. Sumida, K. Hirata, S. Nojima and N. Mizuno, *Angew. Chem., Int. Ed.*, 2011, **50**, 12062-12066.
- 12. W. Lueangchaichaweng, N. R. Brooks, S. Fiorilli, E. Gobechiya, K. Lin, L. Li, S. Parres-Esclapez, E. Javon, S. Bals, G. Van Tendeloo, J. A. Martens, C. E. A. Kirschhock, P. A. Jacobs and P. P. Pescarmona, *Angew. Chem., Int. Ed.*, 2014, **53**, 1585-1589.
- 13. R. Sen, D. K. Hazra, M. Mukherjee and S. Koner, *Eur. J. Inorg. Chem.*, 2011, **2011**, 2826-2831.
- 14. I. D. Ivanchikova, N. V. Maksimchuk, I. Y. Skobelev, V. V. Kaichev and O. A. Kholdeeva, J. *Catal.*, 2015, **332**, 138-148.