Electronic Supplementary Information (ESI)

New Journal of Chemistry

Silver(I) complexes with 2-acetylpyridinebenzoylhydrazones exhibit antimicrobial effects against yeast and filamentous fungi

Ane F. Santos,^a Isabella P. Ferreira,^a Jacqueline A. Takahashi,^a Gabriel L. S. Rodrigues^a,

Carlos B. Pinheiro^b, Letícia R. Teixeira^a, Willian R. Rocha^a, Heloisa Beraldo^{*a}

^a Departamento de Química, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, MG, Brazil

^b Departamento de Física, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, MG, Brazil

*Corresponding author. Phone number: +55 (31) 3409-5740.

E-mail address: hberaldo@ufmg.br

heloisaberaldoufmg@gmail.com (H. Beraldo)

Table of contents

<i>The chemical structures of 2-acetylpyridine derived hydrazones and their silver(I) complexes (1-4)</i>	. 3
Infrared spectra of 2-acetylpyridine derived hydrazones and their silver(I) complexes (1-4)	. 4
¹ <i>H</i> , COSY, ¹³ $C{^{1}H}$ and HMQC NMR spectra of silver(I) complexes (1-4)	. 8
Mass spectra (ESI) of silver(I) complexes (1-4)	24
X-ray crystallography	28
Structure Activity Relationship (SAR) studies	32

The chemical structures of 2-acetylpyridine derived hydrazones and their silver(I) complexes (1-4)

Fig. S1 Syntheses of the silver(I) complexes with 2-acetylpyridine derived hydrazones and carbon atoms numbering.

Fig. S2 IR spectrum of H2AcPh (black) and [Ag(H2AcPh)NO₃] (1) (red) obtained in KBr pellets (4000-400 cm⁻¹).

Fig. S3 IR spectrum of H2AcpCH₃Ph (black) and [Ag(H2AcpCH₃Ph)NO₃] (2) (red) obtained in KBr pellets (4000-400 cm⁻¹).

Fig. S4 IR spectrum of H2AcpClPh (black) and [Ag(H2AcpClPh)NO₃] (3) (red) obtained in KBr pellets (4000-400 cm⁻¹).

Fig. S5 IR spectrum of H2AcpNO₂Ph (black) and [Ag(H2AcpNO₂Ph)NO₃] (4) (red) obtained in KBr pellets (4000-400 cm⁻¹).

Fig. S6 ¹H NMR spectrum of H2AcPh (black) and [Ag(H2AcPh)NO₃] (1) (red) registered in DMSO-*d*₆ at 25°C.

Fig. S7 COSY (¹H-¹H) contour map of [Ag(H2AcPh)NO₃] (1) registered in DMSO-*d*₆ at 25°C.

Fig. S8 ¹³C{¹H} NMR spectrum of H2AcPh (black) and $[Ag(H2AcPh)NO_3]$ (1) (red) registered in DMSO-*d*₆ at 25°C.

Fig. S9 HMQC (${}^{1}\text{H}{}^{-13}\text{C}{}^{1}\text{H}{}$) contour map of [Ag(H2AcPh)NO₃] (**1**) registered in DMSO-*d*₆ at 25°C.

Fig. S10 ¹H NMR spectrum of H2AcpCH₃Ph (black) and [Ag(H2AcpCH₃Ph)NO₃] (**2**) (red) registered in DMSO-*d*₆ at 25°C.

Fig. S11 COSY (¹H-¹H) contour map of [Ag(H2Ac*p*CH₃Ph)NO₃] (**2**) registered in DMSO-*d*₆ at 25°C.

Fig. S12 ¹³C{¹H} NMR spectrum of H2AcpCH₃Ph (black) and [Ag(H2AcpCH₃Ph)NO₃] (**2**) (red) registered in DMSO- d_6 at 25°C.

Fig. S13 HMQC (${}^{1}\text{H}{}^{-13}\text{C}{}^{1}\text{H}{}$) contour map of [Ag(H2AcpCH₃Ph)NO₃] (**2**) registered in DMSO-*d*₆ at 25°C.

Fig. S14 ¹H NMR spectrum of H2AcpClPh (black) and [Ag(H2AcpClPh)NO₃] (**3**) (red) registered in DMSO-*d*₆ at 25°C.

Fig. S15 COSY (1 H- 1 H) contour map of [Ag(H2AcpClPh)NO₃] (**3**) registered in DMSO- d_{6} at 25°C.

Fig. S16 ${}^{13}C{}^{1}H$ NMR spectrum of H2AcpClPh (black) and [Ag(H2AcpClPh)NO₃] (**3**) (red) registered in DMSO- d_6 at 25°C.

Fig. S17 HMQC ($^{1}H^{-13}C{^{1}H}$) contour map of [Ag(H2AcpClPh)NO₃] (**3**) registered in DMSO- d_6 at 25°C.

Fig. S18 ¹H NMR spectrum of H2AcpNO₂Ph (black) and [Ag(H2AcpNO₂Ph)NO₃] (4) (red) registered in DMSO-*d*₆ at 25°C.

Fig. S19 COSY (¹H-¹H) contour map of [Ag(H2AcpNO₂Ph)NO₃] (4) registered in DMSO-*d*₆ at 25°C.

Fig. S20 ¹³C{¹H} NMR spectrum of H2AcpNO₂Ph (black) and [Ag(H2AcpNO₂Ph)NO₃] (4) (red) registered in DMSO- d_6 at 25°C.

Fig. S21 HMQC (${}^{1}\text{H}{}^{-13}\text{C}{}^{1}\text{H}{}$) contour map of [Ag(H2AcpNO₂Ph)NO₃] (4) registered in DMSO-*d*₆ at 25°C.

Fig. S22 A) Mass spectrum ESI-MS (+) of $[Ag(H2AcPh)NO_3]$ (1). B) Comparison between the experimental (m/z 347.9977) and theoretical (m/z 348.0101) isotopic pattern of the species $[Ag(H2AcPh)]^+$. C) Comparison between the experimental (m/z 587.1149) and theoretical (m/z 587.1162) isotopic pattern of the species $[Ag(H2AcPh)_2]^+$.

Fig. S23 A) Mass spectrum ESI-MS (+) of $[Ag(H2AcpCH_3Ph)NO_3]$ (2). B) Comparison between the experimental (m/z 360.0142) and theoretical (m/z 360.0260) isotopic pattern of the species $[Ag(H2AcpCH_3Ph)]^+$. C) Comparison between the experimental (m/z 615.1456) and theoretical (m/z 615.1476) isotopic pattern of the species $[Ag(H2AcpCH_3Ph)]^+$.

Fig. S24 A) Mass spectrum ESI-MS (+) of $[Ag(H2AcpClPh)NO_3]$ (**3**). B) Comparison between the experimental (m/z 381.9577) and theoretical (m/z 381.9705) isotopic pattern of the species $[Ag(H2AcpClPh)]^+$. C) Comparison between the experimental (m/z 655.0371) and theoretical (m/z 655.0371) isotopic pattern of the species $[Ag(H2AcpClPh)_2]^+$.

Fig. S25 A) Mass spectrum ESI-MS (+) of [Ag(H2AcpNO₂Ph)NO₃] (4). B) Comparison between the experimental (m/z 390.9882) and theoretical (m/z 390.9954) isotopic pattern of the species [Ag(H2AcpNO₂Ph)]⁺. C) Comparison between the experimental (m/z 677.0851) and theoretical (m/z 677.0864) isotopic pattern of the species [Ag(H2AcpNO₂Ph)₂]⁺.

X-ray crystallography

Table S1 Crystal data and structure refinement results for [Ag(H2AcPh)NO₃] (1), [Ag(H2AcpCH₃Ph)₂]NO₃

Compound	(1)	(2a)	(3a)	(4 a)
Empirical formula	$C_{14}H_{13}N_4O_4Ag$	$C_{30}H_{30}N_7O_5Ag$	$C_{28}H_{24}Cl_2N_7O_5Ag$	$C_{14}H_{14}N_5O_7Ag$
Molecular weight	409.15	676.48	717.31	472.17
$(g \text{ mol}^{-1})$				
T (K)	270(2)	270(2)	270(2)	270(2)
Crystal system	monoclinic	triclinic	triclinic	monoclinic
Space group	P 2 ₁ /n	P -1	P -1	P 2 ₁ /c
Unit cell dimensions				
a (Å)	6.7603(7)	8.4416(6)	8.2925(4)	7.2535(4)
b (Å)	13.0051(7)	12.9864(5)	13.1239(7)	13.2543(7)
c (Å)	16.5751(9)	14.7636(6)	14.7518(7)	17.9111(8)
α (°)	90	112.115(4)	112.238(5)	90
β (°)	97.889(7)	99.194(4)	98.638(4)	99.214(4)
γ (°)	90	95.337(4)	96.159(4)	90
$V(Å^3)$	1443.46(19)	1459.23(14)	1445.35(13)	1699.76(15)
Z	4	2	2	4
Density calculated	1.883	1.540	1.648	1.845
$(Mg m^{-3})$				
Absorption coefficient	1.424	0.743	0.934	1.237
(mm^{-1})				
F(000)	816	692	724	944
Crystal size (mm)	0.21 x 0.06 x 0.06	0.39 x 0.19 x 0.08	0.43 x 0.13 x 0.05	0.36 x 0.09 x 0.07
θ °range for data	2.0 to 26.4	2.5 to 26.4	2.5 to 26.4	1.9 to 29.5
collection				
	$-8 \le h \le 8$	$-10 \le h \le 9$	$-10 \le h \le 10$	$-10 \le h \le 9$
Index ranges	$-16 \le k \le 15$	$-16 \le k \le 16$	$-16 \le k \le 16$	$-18 \le k \le 15$
-	$-20 \le l \le 20$	$-18 \le 1 \le 18$	$-18 \le 1 \le 18$	$-24 \le l \le 24$
Reflections collected	12186	12718	22505	13375
Independent reflections	2968 (0.0762)	5972 (0.0283)	5925 (0.0521)	4195 (0.0325)
(R _{int})				
Completeness to	100	99.9	99.9	100
$\theta = 25.242$ (%)				
Data/restraints/parameters	2968/0/209	5972/12/420	5925/12/388	4195/3/251
Goodness-of-fit on F^2	1.079	1.032	1.037	1.023
Final R indices $[I > 2\sigma(I)]$	$R_1 = 0.0625$,	$R_1 = 0.0293$,	$R_1 = 0.0452$,	$R_1 = 0.0623$,
	$wR_2 = 0.1508$	$wR_2 = 0.0655$	$wR_2 = 0.1024$	$wR_2 = 0.1419$
R indices (all data)	$R_1 = 0.1019$	$R_1 = 0.0409$,	$R_1 = 0.0735$,	$R_1 = 0.0932$,
` ' '	$wR_2 = 0.1764$	$wR_2 = 0.0708$	$wR_2 = 0.1204$	$wR_2 = 0.1617$
Largest diff. peak and hole $(e A^{-3})$	1.562 and -0.668	0.276 and -0.441	1.149 and -0.796	2.549 and -0.894

(2a), $[Ag(H2AcpClPh)_2]NO_3(3a)$ and $[Ag(H2AcpNO_2Ph)(H_2O)(NO_3)]$ (4a).

Table S2 Selected bond lengths (Å) for[Ag(H2AcPh)NO₃] (**1**), [Ag(H2AcpCH₃Ph)₂]NO₃ (**2a**), [Ag(H2AcpClPh)₂]NO₃ (**3a**) and [Ag(H2AcpNO₂Ph)(H₂O)(NO₃)] (**4a**) along with data for H2AcPh and H2AcpClPh.

Atoms	H2AcPh ⁴⁰	(1)	(2a)	H2AcpClPh ¹³	(3a)	(4a)
N1-C2	1.325(3)	1.350(8)	1.344(3)	1.3345(19)	1.343(5)	1.342(6)
C2-C7	1.487(2)	1.494(8)	1.492(3)	1.4900(18)	1.496(6)	1.491(7)
C7-N2	1.264(3)	1.280(7)	1.282(3)	1.2860(18)	1.279(5)	1.278(6)
N2-N3	1.375(2)	1.369(7)	1.377(2)	1.3810(15)	1.380(4)	1.369(6)
N3-C8	1.347(3)	1.365(8)	1.367(3)	1.3590(17)	1.364(5)	1.359(6)
C8-O1	1.219(2)	1.219(7)	1.219(3)	1.2260(16)	1.219(4)	1.217(6)
Ag1-N1	_	2.338(5)	2.3709(19)	_	2.372(3)	2.378(4)
Ag1-N2	_	2.378(5)	2.3930(16)	_	2.401(3)	2.372(4)
Ag1-01	_	2.564(4)	2.5923(16)	_	2.619(3)	2.629(4)
Ag1-O2	_	2.384(6)	_	_	_	2.488(5)
Ag1-O3	_	2.692(6)	_	_	_	2.665(4)
Ag1-N4	_	_	2.3631(17)	_	2.371(3)	_
Ag1-N5	_	_	2.3565(17)	_	2.376(3)	_
Ag1-O1W	_	_	_	_	_	2.359 (4)

Table S3 Selected angles (°) for $[Ag(H2AcPh)NO_3]$ (1), $[Ag(H2AcpCH_3Ph)_2]NO_3$ (2a), $[Ag(H2AcpClPh)_2]NO_3$ (3a) and $[Ag(H2AcpNO_2Ph)(H_2O)(NO_3)]$ (4a) along with data for H2AcPhand H2AcpClPh.

Atoms	H2AcPh ⁴⁰	(1)	(2a)	H2AcpClPh ¹³	(3 a)	(4a)
N1-C2-C7	116.2(1)	117.2(5)	117.14(19)	116.40(12)	117.2(3)	116.8(4)
C2-C7-N2	114.5(1)	114.2(5)	115.23(19)	115.12(12)	115.4(3)	115.8(4)
C7-N2-N3	119.0(1)	120.0(5)	118.86(18)	116.22(11)	118.6(3)	119.5(4)
N2-N3-C8	117.0(1)	118.1(5)	117.51(16)	117.89(11)	117.7(3)	118.0(4)
N3-C8-O1	123.3(2)	122.3(5)	121.82(19)	123.28(13)	122.2(4)	122.8(5)
N1-Ag1-N2	_	68.18(17)	68.26(6)	_	68.25(11)	68.52(13)
N1-Ag1-O2	_	118.35(19)	_	_	_	116.77(14)
N2-Ag1-O2	_	118.97(18)	_	_	_	120.45(13)
N1-Ag1-O1	_	133.45(16)	132.39(6)	_	132.01(10)	132.60(13)
N2-Ag1-O1	_	65.27(15)	64.15(5)	_	63.82(10)	64.23(12)
O2-Ag1-O1	_	85.17(15)	_	_	_	90.81(15)
N1-Ag1-O3	_	92.69(18)	_	_	_	93.85(14)
N2-Ag1-O3	_	150.62(18)	_	_	_	152.95(14)
O2-Ag1-O3	_	49.84(16)	_	_	_	48.33(13)
01-Ag1-O3	_	129.51(16)	_	_	_	131.23(14)
N4-Ag1-N5	_	_	68.82(6)	_	68.71(10)	_
N5-Ag1-O1	_	_	115.74(6)	_	118.86(10)	_
N1-Ag1-N5	_	_	106.96(6)	_	106.56(11)	_

Compound	D—H···A	D-H	H····A	D…A	D—H…A
(1)	$N3-H3N\cdots O2^{i}$	0.86	2.23	2.996(7)	149
(2a)	N3-H3N····O4A ⁱⁱ	0.86	2.22	3.051(10)	164
(2a)	N3-H3N⋯O4B ⁱⁱ	0.86	2.52	3.374(17)	173
(2a)	N6-H6N…O2A	0.86	2.33	2.974(12)	132
(2a)	N6-H6N····O2B	0.86	2.21	2.905(13)	138
(3 a)	N3-H3N····O4A ⁱⁱ	0.86	2.23	3.079(7)	169
(3a)	N3-H3N····O4B ⁱⁱ	0.86	2.30	3.109(8)	156
(3a)	N6-H6N…O2A	0.86	2.33	2.987(7)	134
(3a)	N6-H6N····O2B	0.86	2.34	3.071(9)	142
(4a)	N3-H3N…O2 ⁱⁱⁱ	0.86	2.33	3.124(6)	154
(4a)	O1W-H1W····O4 ^{vi}	0.82(1)	2.01(4)	2.770(6)	154(8)
(4a)	$O1W-H2W\cdots O5^{v}$	0.82(1)	2.50(7)	3.122(7)	134(8)
(4a)	$O1W-H2W\cdots O6^{v}$	0.82(1)	2.51(3)	3.305(7)	164(8)

Table S4 Hydrogen-bond geometry $(\text{\AA}, ^{\circ})$ for (1-4a).

31

Structure Activity Relationship (SAR) studies

Compound		$E_{\rm HOMO}~({\rm eV})$	$E_{\rm LUMO}~({\rm eV})$	$\Delta E (eV)$	μ (D)	S.A (Å ²)	V (Å ³)	logP
H2AcPh	(<i>E</i>)	-6.332	-1.767	4.565	4.675	343.76	222.34	1.98
H2AcpCH ₃ Ph	(E)	-6.283	-1.763	4.520	9.332	375.47	239.27	2.49
H2AcpClPh	(E)	-6.300	-1.887	4.413	4.139	359.64	236.23	2.58
H2AcpNO ₂ Ph	(E)	-6.394	-2.871	3.523	6.243	384.56	245.6	1.92
H2AcPh	(Z)	-6.319	-1.920	4.399	9.970	342.03	222.52	1.98
H2AcpCH ₃ Ph	(Z)	-6.277	-1.899	4.378	10.108	374.83	239.38	2.49
H2AcpClPh	(Z)	-6.350	-1.934	4.416	10.064	359.36	236.36	2.58
H2AcpNO ₂ Ph	(Z)	-6.443	-2.828	3.615	11.325	383.97	245.71	1.92
[Ag(H2AcPh)NO ₃]	(1)	-6.894	-2.520	4.374	7.440	336.52	239.79	2.80
[Ag(H2AcpCH ₃ Ph)NO ₃]	(2)	-6.812	-2.471	4.341	7.567	369.91	256.68	3.27
[Ag(H2AcpClPh)NO ₃]	(3)	-6.842	-2.540	4.302	11.170	354.07	253.73	3.32
[Ag(H2AcpNO ₂ Ph)NO ₃]	(4)	-7.007	-3.106	3.902	15.896	378.38	263.12	2.76

Table S5 Stereo-electronic parameters for 2-acetylpyridine-derived hydrazones and their silver(I) complexes (1-4).

Table S6 Correlation Matrix between the IC₅₀ data for *Aspergillus flavus* and the Stereo-Electronic parameters of the free-ligands H2AcPh, H2AcpCH₃Ph and H2AcpNO₂Ph (Z and E isomers).

		IC50								Correlation matr	ix							
Compounds	Isomer	Aspergillus flavus	Еномо (eV)	ELUMO (eV)	$\Delta E (eV)$	μ (D)	S.A (Å ²)	V (Å ³)	LogP		Aspergillus flavus	Eномо (eV)	Elumo (eV)	ΔE (eV)	μ (D)	S.A (Å ²)	V (Å ³)	LogP
H2AcPh	Ζ	48.6	-6.319	-1.920	4.399	9.970	342.03	222.52	1.98	Aspergillus flavus	1							
H2AcpCH3Ph	Ζ	23.6	-6.277	-1.899	4.378	10.108	374.83	239.38	2.49	E _{HOMO} (eV)	-0.54497	1						
H2AcpNO ₂ Ph	Ζ	42.1	-6.443	-2.828	3.615	11.325	383.97	245.71	1.92	ELUMO (eV)	-0.27508	0.89878	1					
H2AcPh	Е	48.6	-6.332	-1.767	4.565	4.675	343.76	222.34	1.98	$\Delta E (eV)$	-0.23329	0.87047	0.99815	1				
H2AcpCH ₃ Ph	Е	23.6	-6.283	-1.763	4.520	9.332	375.47	239.27	2.49	μ (D)	-0.38759	-0.02417	-0.09964	-0.10853	1			
H2AcpNO ₂ Ph	Е	42.1	-6.394	-2.871	3.523	6.243	384.56	245.6	1.92	S.A (Å ²)	-0.53567	-0.38345	-0.65381	-0.68091	0.31922	1		
										V (Å ³)	-0.48824	-0.43295	-0.69820	-0.72389	0.33659	0.99773	1	
										LogP	-0.93965	0.78600	0.58460	0.54739	0.30870	0.21464	0.16021	1

Table S7 Correlation Matrix between the IC_{50} data obtained for *Penicillium citrinum* and the Stereo-Electronic parameters of the free-ligands H2AcPh, H2AcpCH₃Ph, H2AcpClPh and H2AcpNO₂Ph (*Z* and *E* isomers)

		IC50								Correlation	n matrix							
Compounds	Isomer	Penicillium citrinum	E _{HOMO} (eV)	Elumo (eV)	ΔE (eV)	μ (D)	S.A (Å ²)	V (Å ³)	LogP		Penicillium citrinum	E _{номо} (eV)	Elumo (eV)	ΔE (eV)	μ (D)	S.A (Å ²)	V (Å ³)	LogP
H2AcPh	Z	72.5	-6.319	-1.920	4.399	9.970	342.03	222.52	1.98	Penicillium citrinum	1							
H2AcpCH3Ph	Ζ	33.4	-6.277	-1.899	4.378	10.108	374.83	239.38	2.49	E _{HOMO} (eV)	-0.34849	1						
H2AcpClPh	Ζ	44.1	-6.350	-1.934	4.416	10.064	359.36	236.36	2.58	E _{LUMO} (eV)	-0.10861	0.87592	1					
H2AcpNO ₂ Ph	Ζ	53.9	-6.443	-2.828	3.615	11.325	383.97	245.71	1.92	$\Delta E (eV)$	-0.07333	0.84179	0.99777	1				
H2AcPh	Е	72.5	-6.332	-1.767	4.565	4.675	343.76	222.34	1.98	μ (D)	-0.24292	-0.18460	-0.15718	-0.15034	1			
H2AcpCH3Ph	Е	33.4	-6.283	-1.763	4.520	9.332	375.47	239.27	2.49	S.A (Å ²)	-0.61756	-0.38830	-0.67268	-0.69896	0.29597	1		
H2AcpClPh	Е	44.1	-6.300	-1.887	4.413	4.139	359.64	236.23	2.58	V (Å ³)	-0.66355	-0.41449	-0.66623	-0.68813	0.25913	0.96790	1	
H2AcpNO ₂ Ph	Е	53.9	-6.394	-2.871	3.523	6.243	384.56	245.6	1.92	LogP	-0.78128	0.65584	0.59805	0.57847	0.01541	0.01320	0.13680	1

	IC ₅₀								Correlatio	on matrix							
Compounds	Aspergillus flavus	E _{номо} (eV)	Elumo (eV)	ΔE (eV)	μ (D)	S.A (Å ²)	V (Å ³)	LogP		Aspergillus flavus	Eномо (eV)	Elumo (eV)	ΔE (eV)	μ (D)	S.A (Å ²)	V (Å ³)	LogP
[Ag(H2AcPh)NO ₃] (1)	12.4	-6.894	-2.520	4.374	7.440	336.52	239.79	2.80	Aspergillus flavus	1							
$[Ag(H2AcpCH_3Ph)NO_3] (2)$	10.5	-6.812	-2.471	4.341	7.567	369.91	256.68	3.27	E _{HOMO} (eV)	-0,30915	1						
$[Ag(H2AcpClPh)NO_3] (3)$	41.4	-6.842	-2.540	4.302	11.170	354.07	253.73	3.32	E _{LUMO} (eV)	-0.44226	0.93629	1					
$[Ag(H2AcpNO_2Ph)NO_3] (4)$	32.9	-7.007	-3.106	3.902	15.896	378.38	263.12	2.76	$\Delta E (eV)$	-0,47910	0.87953	0.99063	1				
									μ (D)	0.73959	-0.79621	-0.92604	-0.94497	1			
									S.A (Å ²)	0.23590	-0.32975	-0.62292	-0.71562	0.62611	1		
									V (Å ³)	0.45714	-0.32005	-0.63168	-0.73130	0.72076	0.97010	1	
									LogP	0.15092	0.84746	0.62831	0.52156	-0.35444	0.06685	0.15783	1

Table S8 Correlation Matrix between the IC₅₀ data for *Aspergillus flavus* and the Stereo-Electronic parameters of complexes (1-4)

Table S9 Correlation Matrix between the IC₅₀ data for *Penicillium citrinum* and the Stereo-Electronic parameters of complexes (1), (2) and (4)

	IC50								Correlatio	on matrix							
Compounds	Penicillium citrinum	Еномо (eV)	Elumo (eV)	ΔE (eV)	μ (D)	S.A (Å ²)	V (Å ³)	LogP		Penicillium citrinum	Eномо (eV)	Elumo (eV)	ΔE (eV)	μ (D)	S.A (Å ²)	V (Å ³)	LogP
[Ag(H2AcPh)NO ₃] (1)	39.8	-6.894	-2.520	4.374	7.440	336.52	239.79	2.80	Penicillium citrinum	1							
$[Ag(H2AcpCH_3Ph)NO_3] (2)$	17.1	-6.812	-2.471	4.341	7.567	369.91	256.68	3.27	Еномо(eV)	-0.55528	1						
$[Ag(H2AcpNO_2Ph)NO_3] (4)$	31.6	-7.007	-3.106	3.902	15.896	378.38	263.12	2.76	E _{LUMO} (eV)	-0.22645	0.93580	1					
									$\Delta E (eV)$	-0.09691	0.88156	0.99138	1				
									μ (D)	0.14531	-0.90352	-0.99659	-0.99881	1			
									S.A (Å ²)	-0.64098	-0.28243	-0.60247	-0.70183	0.66627	1		
									V (Å ³)	-0.57923	-0.35631	-0.66283	-0.75520	0.72235	0.99696	1	
									LogP	-0.90675	0.85419	0.61605	0.50757	-0.54896	0.25754	0.18147	1

	IC50								Correlation	1 matrix							
Compounds	Candida dubliniensis	E _{номо} (eV)	Elumo (eV)	ΔE (eV)	μ (D)	S.A (Å ²)	V (Å ³)	LogP		Candida dubliniensis	E _{номо} (eV)	E _{LUMO} (eV)	ΔE (eV)	μ (D)	S.A (Å ²)	V (Å ³)	LogP
[Ag(H2AcPh)NO ₃] (1)	40.7	-6.893	-2.519	4.373	7.440	336.52	239.79	2.80	Candida dubliniensis	1							
[Ag(H2AcpCH ₃ Ph)NO ₃] (2)	44.3	-6.811	-2.470	4.341	7.566	369.91	256.68	3.27	E _{HOMO} (eV)	0.52858	1						
$[Ag(H2AcpClPh)NO_3]$ (3)	14.5	-6.842	-2.540	4.302	11.170	354.07	253.73	3.32	E _{LUMO} (eV)	0.64759	0.93715	1					
$[Ag(H2AcpNO_2Ph)NO_3] (4)$	13.9	-7.000	-3.105	3.901	15.896	378.38	263.12	2.76	$\Delta E (eV)$	0.67205	0.88115	0.99076	1				
									μ (D)	-0.87703	-0.79832	-0.92643	-0.94503	1			
									S.A (Å ²)	-0.34712	-0.33147	-0.62277	-0.71504	0.62608	1		
									V (Å ³)	-0.53839	-0.32244	-0.63179	-0.73077	0.72073	0.97010	1	
									LogP	0.05939	0.84565	0.62789	0.52208	-0.35447	0.06685	0.15783	1

Table S10 Correlation Matrix between the IC₅₀ data for *Candida dubliniensis* and the Stereo-Electronic parameters of complexes (1-4)

 Table S11 Correlation Matrix between the IC₅₀ data for *Candida glabrata* and the Stereo-Electronic parameters of complexes (1-4)

 IC_x

									Correlation	n matrix							
Compounds	Candida glabrata	E _{номо} (eV)	Elumo (eV)	ΔE (eV)	μ (D)	S.A (Å ²)	V (Å ³)	LogP		Candida glabrata	Еномо (eV)	Elumo (eV)	ΔE (eV)	μ (D)	S.A (Å ²)	V (Å ³)	LogP
[Ag(H2AcPh)NO ₃] (1)	52.8	-6.894	-2.520	4.374	7.440	336.52	239.79	2.80	Candida glabrata	1							
$[Ag(H2AcpCH_3Ph)NO_3] (2)$	44.3	-6.812	-2.471	4.341	7.567	369.91	256.68	3.27	Eномо(eV)	-0.78690	1						
$[Ag(H2AcpClPh)NO_3]$ (3)	42.1	-6.842	-2.540	4.302	11.170	354.07	253.73	3.32	ELUMO(eV)	-0.55795	0.93715	1					
$[Ag(H2AcpNO_2Ph)NO_3] (4)$	52.6	-7.007	-3.106	3.902	15.896	378.38	263.12	2.76	$\Delta E (eV)$	-0.45015	0.88115	0.99076	1				
									μ (D)	0.25670	-0.79832	-0.92643	-0.94503	1			
									S.A (Å ²)	-0.09711	-0.33147	-0.62277	-0.71504	0.62608	1		
									V (Å ³)	-0.21152	-0.32244	-0.63179	-0.73077	0.72073	0.97010	1	l

LogP

-0.99321

0.84565

0.62789

0.52208

-0.35447

1

0.15783

0.06685

	IC50								Correlati	on matrix							
Compounds	Candida lusitaniae	Еномо (eV)	Elumo (eV)	ΔE (eV)	μ (D)	S.A (Å ²)	V (Å ³)	LogP		Candida lusitaniae	E _{номо} (eV)	Elumo (eV)	ΔE (eV)	μ (D)	S.A (Å ²)	V (Å ³)	LogP
[Ag(H2AcPh)NO ₃] (1)	29.1	-6.894	-2.520	4.374	7.440	336.52	239.79	2.80	Candida lusitaniae	1							
[Ag(H2AcpCH ₃ Ph)NO ₃] (2)	33.7	-6.812	-2.471	4.341	7.567	369.91	256.68	3.27	Eномо(eV)	0.67426	1						
$[Ag(H2AcpClPh)NO_3] (3)$	20.2	-6.842	-2.540	4.302	11.170	354.07	253.73	3.32	E _{LUMO} (eV)	0.73494	0.93715	1					
$[Ag(H2AcpNO_2Ph)NO_3] (4)$	17.5	-7.007	-3.106	3.902	15.896	378.38	263.12	2.76	$\Delta E (eV)$	0.73378	0.88115	0.99076	1				
									μ (D)	-0.90496	-0.79832	-0.92643	-0.94503	1			
									S.A (Å ²)	-0.28474	-0.33147	-0.62277	-0.71504	0.62608	1		
									V (Å ³)	-0.45535	-0.32244	-0.63179	-0.73077	0.72073	0.97010	1	
									LogP	0.26189	0.84565	0.62789	0.52208	-0.35447	0.06685	0.15783	1

Table S12 Correlation Matrix between the IC₅₀ data for *Candida lusitaniae* and the Stereo-Electronic parameters of complexes (1-4)

IC50 **Correlation matrix** E_{LUMO} V Elumo S.A Penicillium Еномо ΔΕ S.A Penicillium Еномо ΔE V μ μ Compounds LogP LogP Isomer (Å²) (Å³) citrinum (eV) (eV) (eV) (D) citrinum (eV) (eV) (eV) (D) $(Å^2)$ (Å³) Penicillium 222.52 4.399 H2AcPh Ζ 72.5 -6.319 -1.920 9.970 342.03 1.98 citrinum 1 Ζ H2AcpCH₃Ph 33.4 -1.899 4.378 10.108 374.83 239.38 -6.277 2.49 Еномо(eV) 0.49680 1 H2AcpClPh Ζ 44.1 -6.350 -1.934 4.416 10.064 359.36 236.36 2.58 ELUMO(eV) 0.23835 0.70106 1 -2.828 H2AcpNO₂Ph Ζ 53.9 -6.443 3.615 11.325 383.97 245.71 1.92 $\Delta E (eV)$ -0.04445 0.21367 0.84643 1 Е 72.5 -1.767 4.565 4.675 343.76 222.34 H2AcPh -6.332 1.98 μ (D) -0.45060 -0.31859 -0.26999 -0.40002 1 H2AcpCH₃Ph 9.332 Е 33.4 -6.283 -1.763 4.520 375.47 239.27 2.49 S.A (Å²) -0.47457 -0.66473 0.38684 -0.42733 0.01954 1 H2AcpClPh Е 44.1 -6.300 -1.887 4.413 4.139 359.64 236.23 2.58 V (Å³) -0.76776 -0.70576 -0.76950 -0.52715 0.50840 0.66692 1 H2AcpNO₂Ph Е 53.9 -6.394 -2.871 3.523 6.243 384.56 245.6 1.92 LogP -0.86887 -0.61535 -0.07679 0.35431 0.11992 -0.02843 0.56163 1 $[Ag(H2AcPh)NO_3]$ (1) 39.8 -2.520 336.52 239.79 2.80 -6.894 4.374 7.440 $[Ag(H2AcpCH_3Ph)NO_3]$ (2) 17.1 -6.812 -2.471 4.341 7.567 369.91 256.68 3.27 $[Ag(H2AcpNO_2Ph)NO_3]$ (4) 31.6 -3.106 3.902 15.896 378.38 263.12 2.76 -7.007

Table S13 Correlation Matrix between the IC₅₀ data for *Penicillium citrinum* and the Stereo-Electronic parameters of the ligands H2AcPh, H2AcpCH₃Ph, H2AcpClPh and H2AcpNO₂Ph (*Z* and *E* isomers) and complexes (1-4)

IC_{50}											Correlation matrix										
Compounds	Isomer	Candida glabrata	Еномо (eV)	Elumo (eV)	ΔE (eV)	μ (D)	S.A (Å ²)	V (Å ³)	LogP		Candida glabrata	Eномо (eV)	Elumo (eV)	ΔE (eV)	μ (D)	S.A (Å ²)	V (Å ³)	LogP			
H2AcpClPh	Ζ	102.8	-6.350	-1.934	4.416	10.064	359.36	236.36	2.58	Candida glabrata	1										
H2AcpNO ₂ Ph	Ζ	77.0	-6.443	-2.828	3.615	11.325	383.97	245.71	1.92	Eномо(eV)	0.90610	1									
H2AcpClPh	Е	102.8	-6.300	-1.887	4.413	4.139	359.64	236.23	2.58	Elumo(eV)	0.59964	0.52035	1								
H2AcpNO ₂ Ph	Е	77.0	-6.394	-2.871	3.523	6.243	384.56	245.6	1.92	$\Delta E (eV)$	0.00290	-0.16028	0.75951	1							
[Ag(H2AcPh)NO ₃] (1)		52.8	-6.894	-2.520	4.374	7.440	336.52	239.79	2.80	μ (D)	-0.38215	-0.53503	-0.57311	-0.25489	1						
$[Ag(H2AcpCH_3Ph)NO_3] (2)$		44.3	-6.812	-2.471	4.341	7.567	369.91	256.68	3.27	S.A (Å ²)	0.12232	0.26304	-0.53300	-0.81645	0.26905	1					
$[Ag(H2AcpClPh)NO_3] (3)$		42.1	-6.842	-2.540	4.302	11.170	354.07	253.73	3.32	V (Å ³)	-0.76774	-0.73458	-0.71121	-0.26251	0.64968	0.40027	1				
$[Ag(H2AcpNO_2Ph)NO_3]$ (4)		52.6	-7.007	-3.106	3.902	15.896	378.38	263.12	2.76	LogP	-0.59212	-0.65469	0.21859	0.75137	0.12441	-0.56143	0.4026	1			

Table S14 Correlation Matrix between the IC₅₀ data for *Candida glabrata* and the Stereo-Electronic parameters of the ligands H2AcpClPh and H2AcpNO₂Ph (*Z* and *E* isomers) and complexes (1-4)

Table S15 Correlation Matrix between the IC₅₀ data for *Candida tropicalis* and the Stereo-Electronic parameters of the ligands H2AcpClPh and H2AcpNO₂Ph (*Z* and *E* isomers) and complexes (1-4)

IC ₅₀										Correlation matrix									
Compounds	Isomer	Candida tropicalis	E _{номо} (eV)	Elumo (eV)	ΔE (eV)	μ (D)	S.A (Å ²)	V (Å ³)	LogP		Candida tropicalis	Eномо (eV)	Elumo (eV)	ΔE (eV)	μ (D)	S.A (Å ²)	V (Å ³)	Log P	
H2AcpClPh	Z	164.1	-6.350	-1.934	4.416	10.064	359.36	236.36	2.58	Candida tropicalis	1								
H2AcpNO ₂ Ph	Ζ	99.0	-6.443	-2.828	3.615	11.325	383.97	245.71	1.92	Eномо(eV)	0.90452	1							
H2AcpClPh	Е	164.1	-6.300	-1.887	4.413	4.139	359.64	236.23	2.58	Elumo(eV)	0.69676	0.52035	1						
H2AcpNO ₂ Ph	Е	99.0	-6.394	-2.871	3.523	6.243	384.56	245.6	1.92	$\Delta E (eV)$	0.11636	-0.16028	0.75951	1					
[Ag(H2AcPh)NO ₃] (1)		45.2	-6.894	-2.520	4.374	7.440	336.52	239.79	2.80	μ (D)	-0.42414	-0.53503	-0.57311	-0.25489	1				
$[Ag(H2AcpCH_3Ph)NO_3] (2)$		60.7	-6.812	-2.471	4.341	7.567	369.91	256.68	3.27	S.A (Å ²)	0.11492	0.26304	-0.53300	-0.81645	0.26905	1			
$[Ag(H2AcpClPh)NO_3]$ (3)		40.5	-6.842	-2.540	4.302	11.170	354.07	253.73	3.32	V (Å ³)	-0.72338	-0.73458	-0.71121	-0.26251	0.64968	0.4002	1		
$[Ag(H2AcpNO_2Ph)NO_3] (4)$		50.8	-7.007	-3.106	3.902	15.896	378.38	263.12	2.76	LogP	-0.45914	-0.65469	0.21859	0.75137	0.12441	-0.5614	0.4026	1	