Supporting Information

Dual Emission via Remote Control of Molecular Rotation of o-Carborane in the Excited State by the Distant Substituents in Tolane-Modified Dyads

Kenta Nishino, Kyoya Uemura, Kazuo Tanaka*, and Yoshiki Chujo*
Department of Polymer Chemistry, Graduate School of Engineering, Kyoto

University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan

E-mail: tanaka@poly.synchem.kyoto-u.ac.jp; chujo@poly.synchem.kyoto-u.ac.jp

Experimental Section

General

All reagents were obtained from commercial sources and used without further purification. THF was purified using a two-column solid-state purification system (Glass Contour Solvent System, Joerg Meyer, Irvine, CA). ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{11} \mathrm{~B}$ NMR spectra were recorded on a JEOL JNM-EX400 instrument at 400 , 100, and 128 MHz , respectively. The ${ }^{1} \mathrm{H}$ chemical shift values were expressed relative to $\mathrm{Me}_{4} \mathrm{Si}$ in CDCl_{3} as an internal standard. The ${ }^{13} \mathrm{C}$ shift values were expressed relative to CHCl_{3} in CDCl_{3} as an internal standard. The ${ }^{11} \mathrm{~B}$ chemical shift values were expressed relative to $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ as an external standard. High-resolution mass spectra (HRMS) were obtained on a Thermo Fisher Scientific EXACTIVE spectrometer for atmospheric pressure chemical ionization (APCI). The samples were diluted with $\mathrm{CHCl}_{3} / \mathrm{MeOH}$ (50/50 vol\%) before measurements. Analytical thin-layer chromatography (TLC) was performed with silica gel 60 Merck F254 plates. Column chromatography was performed with Wakogel C-300 silica gel. UV-vis absorption spectra were obtained on a SHIMADZU UV3600 spectrophotometer. Photoluminescence (PL) spectra were obtained on a Horiba FluoroMax-4 luminescence spectrometer; absolute PL quantum efficiencies (Φ_{PL}) were determined using a Horiba FL-3018 Integrating Sphere.

Synthesis

General synthesis of \boldsymbol{p}-(o-carboran-1-yl)tolane derivatives

The mixture of p-(o-carboranyl)-bromobenzene ${ }^{1}(1.00 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(0.025$ mmol), XPhos (0.12 mmol) and $\mathrm{CuI}(0.091 \mathrm{mmol})$ was placed in 20 mL eggplant flask. This flask was purged with Ar, followed by introducing THF (3 mL) and triethylamine
(3 mL). Then, ethynylbenzene derivative (1.09 mmol) was added to the solution. The reaction was carried out at $40^{\circ} \mathrm{C}$. After stirring the mixture for 12 h , saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution was added to the reaction mixture. The organic layer was extracted three times with CHCl_{3} and dried over MgSO_{4}. Then, MgSO_{4} was removed, and the solvent was evaporated. The crude reside was purified by silica gel column chromatography with hexane as an eluent. Recrystallization from CHCl_{3} and MeOH gave the product as a colorless crystal.

TCB-H ${ }^{1}: 28 \%$ as a white powder. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta(\mathrm{ppm}) 7.53-7.50(\mathrm{~m}$, $2 \mathrm{H}, \operatorname{Ar}-H), 7.47-7.42(\mathrm{~m}, 4 \mathrm{H}, \operatorname{Ar}-H), 7.36-7.33(\mathrm{~m}, 3 \mathrm{H}, \operatorname{Ar}-H), 3.91(\mathrm{~s}, 1 \mathrm{H}$, carborane_C-H), 3.50-1.50 (br, $10 \mathrm{H}, \mathrm{B}-H) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta(\mathrm{ppm}) 133.0$, $131.8,131.7,128.8,128.4,127.6,125.3,122.6,92.0,87.7,76.0,60.1 .{ }^{11} \mathrm{~B} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right.$, $128 \mathrm{MHz}) \delta(\mathrm{ppm})-1.4,-2.5,-3.6,-4.6,-8.2,-9.5,-10.2,-11.4,-11.9,-13.3$. HRMS (APCI) calcd. For $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~B}_{10}[\mathrm{M}]^{-}: 322.2501$, found 322.2503 .

TCB-OMe ${ }^{1}$: 84% as a white powder. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta(\mathrm{ppm}) 7.47-7.43$ (m, 6H, Ar-H), 6.88 (td, 2H, $J=8.8,2.4, \operatorname{Ar}-H), 3.93$ (s, 1H, carborane_C-H), 3.83 (s, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.24-1.54(\mathrm{br}, 10 \mathrm{H}, \mathrm{B}-H) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta(\mathrm{ppm}) 160.1,133.2$, $132.7,131.6,127.6,125.8,114.7,114.1,92.1,86.6,76.2,60.2,55.3 .{ }^{11} \mathrm{~B}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $128 \mathrm{MHz}) \delta(\mathrm{ppm})-1.4,-2.5,-3.6,-4.7,-8.3,-9.5,-10.2,-11.4,-12.0,-13.3$. HRMS (APCI) calcd. For $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~B}_{10} \mathrm{O}[\mathrm{M}]^{-}: 352.2607$, found 352.2610.

TCB-($\left.\mathbf{C F}_{3}\right)_{2}{ }^{1}: 37 \%$ as a white powder. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta(\mathrm{ppm}) 7.95(\mathrm{~s}, 2 \mathrm{H}$, $\operatorname{Ar}-H), 7.84(\mathrm{~s}, 1 \mathrm{H}, \operatorname{Ar}-H), 7.51$ (s, 4H, $\operatorname{Ar}-H), 3.96$ (s, 1H, C(carborane)-H), 3.47-1.58
(br, $10 \mathrm{H}, \mathrm{B}-H) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta(\mathrm{ppm})$ 134.3, 132.1, 132.1, 131.6, 127.8, $125.0,123.9,122.1\left(\mathrm{q}, J=3 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 121.6,90.9,88.5,77.2,60.1 .{ }^{11} \mathrm{~B} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right.$, $128 \mathrm{MHz}) \delta(\mathrm{ppm})-1.4,-2.5,-3.6,-4.7,-8.2,-9.4,-10.2,-11.5,-13.2$. HRMS (APCI) calcd. For $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~B}_{10} \mathrm{~F}_{6}[\mathrm{M}]:: 458.2249$, found 458.2255 .

TCB-CF $3: 26 \%$ as a white solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta(\mathrm{ppm}) 7.65-7.63(\mathrm{~m}, 4 \mathrm{H}$, Ar-H), 7.52-7.47 (m, 4H, Ar-H), 3.97 (s, 1H, C(carborane)-H), 3.50-1.60 (br, 10H, BH). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta(\mathrm{ppm})$ 133.7, 132.0, 131.9, 127.7, 126.4, 125.41, $125.38,125.3,124.6,90.3,89.9,77.2,60.1 .{ }^{11} \mathrm{~B} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 128 \mathrm{MHz}\right) \delta(\mathrm{ppm})-1.4,-$ 2.6, $-3.6,-4.5,-8.2,-9.4,-10.2,-11.5,-12.0,-13.2$. HRMS (APCI) calcd. For $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~B}_{10} \mathrm{~F}_{3}[\mathrm{M}]:: 388.2448$, found 388.2449 .

TCB-Me: 1% as a white solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta(\mathrm{ppm}) 7.52-7.41(\mathrm{~m}, 6 \mathrm{H}$, Ar-H), 7.22 (dt, 2H, $J=8.8,2.4, ~ A r-H), 3.96$ (s, 1H, C(carborane)-H), 2.38 (s, 3H, CH_{3}), 3.24-1.60 (br, 10H, B-H). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta(\mathrm{ppm})$ 139.1, 132.9, 131.7, 131.6, 129.2, 127.6, 125.6, 119.6, 92.2, 87.1, 77.2, 60.2, 21.5. ${ }^{11} \mathrm{~B}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $128 \mathrm{MHz}) \delta(\mathrm{ppm})-1.5,-2.6,-3.6,-4.6,-8.3,-9.5,-10.2,-11.5,-12.1,-13.3$. HRMS (APCI) calcd. For $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~B}_{10} \mathrm{Cl}[\mathrm{M}+\mathrm{Cl}]^{-}: 371.2341$, found 371.2355 .

TCB-(OMe) $)_{3}: 5 \%$ as a white powder. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta(\mathrm{ppm}) 7.46(\mathrm{~m}, 4 \mathrm{H}$, Ar-H), 6.76 (s, 2H, Ar-H), 3.95 (s, 1H, C(carborane)-H), 3.884 (s, 3H, OMe), 3.877 (s, $6 \mathrm{H}, \mathrm{OMe}), 3.47-1.58$ (br, 10H, B-H). ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta(\mathrm{ppm})$ 153.2, 139.4, 133.0, 131.7, 127.6, 125.3, 117.5, 109.0, 92.0, 86.9, 77.2, 61.0, 60.1, 56.2. ${ }^{11}$ B NMR
$\left(\mathrm{CDCl}_{3}, 128 \mathrm{MHz}\right) \delta(\mathrm{ppm})-1.4,-2.6,-3.8,-4.6,-8.3,-9.5,-10.2,-11.5,-12.0,-13.2$. HRMS (APCI) calcd. For $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{~B}_{10} \mathrm{O}_{3} \mathrm{Cl}[\mathrm{M}+\mathrm{Cl}]^{:}: 445.2501$, found 445.2589 .

TCB-NMe $2: 32 \%$ as a yellow powder. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta(\mathrm{ppm}) 7.42-7.38$ (m, 6H, Ar-H), $6.65(\mathrm{~d}, 2 \mathrm{H}, J=4 \mathrm{~Hz}, \operatorname{Ar}-\mathrm{H}), 3.94$ (s, 1H, C(carborane)-H), 2.99 ($\mathrm{s}, 6 \mathrm{H}$, NMe_{2}), 3.47-1.58 (br, 10H, B-H). ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta(\mathrm{ppm}) 150.5,133.0$, $132.1,131.4,127.5,126.4,111.8,109.3,93.6,86.0,77.3,60.3,40.1 .{ }^{11} \mathrm{~B} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right.$, $128 \mathrm{MHz}) \delta(\mathrm{ppm})-1.5,-2.6,-3.9,-4.6,-8.4,-9.6,-10.1,-11.5,-12.0,-13.3$. HRMS (APCI) calcd. For $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{~B}_{10} \mathrm{~N}_{1}[\mathrm{M}+\mathrm{H}]^{+}: 364.3063$, found 364.3054 .

Chart S1. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{T C B}-\mathbf{C F}_{3}$ in CDCl_{3}.

Chart S2. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{T C B}-\mathbf{C F}_{3}$ in CDCl_{3}.

Chart S3. ${ }^{11} \mathrm{~B}$ NMR spectrum of $\mathbf{T C B}-\mathrm{CF}_{3}$ in CDCl_{3}.

Chart S4. ${ }^{1} \mathrm{H}$ NMR spectrum of TCB-Me in CDCl_{3}.

Chart S5. ${ }^{13} \mathrm{C}$ NMR spectrum of TCB-Me in CDCl_{3}.

Chart S6. ${ }^{11} \mathrm{~B}$ NMR spectrum of TCB-Me in CDCl_{3}.

Chart S7. ${ }^{1} \mathrm{H}$ NMR spectrum of TCB-(OMe) $)_{3}$ in CDCl_{3}.

Chart S8. ${ }^{13} \mathrm{C}$ NMR spectrum of TCB-(OMe) ${ }_{3}$ in CDCl_{3}.

Chart S9. ${ }^{11} \mathrm{~B}$ NMR spectrum of $\mathbf{T C B}-(\mathbf{O M e})_{3}$ in CDCl_{3}.

Chart S10. ${ }^{1} \mathrm{H}$ NMR spectrum of TCB-NMe ${ }_{2}$ in CDCl_{3}.

Chart S11. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{T C B}-\mathrm{NMe}_{2}$ in CDCl_{3}.

Chart S12. ${ }^{11} \mathrm{~B}$ NMR spectrum of TCB-NMe ${ }_{2}$ in CDCl_{3}.

Figure S1. Molecular structures and packing diagrams of (a) TCB-H and (b) TCB-OMe (hydrogen atoms are omitted for clarity, and thermal ellipsoids are displayed at 30% probability).

Table S1. Crystallographic data of TCB-H ${ }^{a}$

Empirical formula	$\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~B}_{10}$
Formula weight	320.42
Temperature (K)	$93(2)$
Wavelength (\AA)	0.71075
Crystal system, space group	Triclinic, $P-1$
Unit cell dimensions	$a=7.3558(5)$
	$b=9.8281(7)$
	$c=13.8221(12)$
	$\alpha=72.201(5)$
	$\beta=78.852(6)$
	$\gamma=74.947(5)$
$V\left(\AA^{3}\right)$	$911.69(13)$
Z, calculated density $\left(\mathrm{Mg} \mathrm{m}^{-3}\right)$	$2,1.167$
Absorption coefficient	0.058
$F(000)$	332
Crystal size (mm)	$1.00 \times 0.60 \times 0.60$
θ range for data collection	$3.05-27.58$
Limiting indices	$-9 \leq h \leq 9,-12 \leq k \leq 12,-17 \leq l \leq 17$
Reflections collected $($ unique $)$	$8554 / 4123[R(\mathrm{int})=0.0487]$
Completeness to theta $=27.575$	0.986
Max. and min. transmission	0.945 and 0.966
Goodness-of-fit on F^{2}	1.221
Final R indices $[I>2 \sigma(I)]^{b}$	$R_{1}=0.0674, \mathrm{w} R_{2}=0.1945$
R indices (all data)	$\mathrm{R} 1=0.0813, \mathrm{wR} 2=0.2427$

${ }^{a}$ The structures were solved by direct method (SHELXT) ${ }^{2}$ and refined by full-matrix least-squares procedures based on F^{2} (SHELX-2014/7). ${ }^{3}{ }^{b} R_{1}=\Sigma\left(\left|F_{0}\right|-\mid F_{\mathrm{c}}\right) / \Sigma\left|F_{0}\right| . \quad \mathrm{w} R_{2}=\left[\Sigma w\left(F^{2}{ }_{0}-F^{2}{ }_{\mathrm{c}}\right)^{2 /}\right.$ $\left.\Sigma w\left(F^{2}{ }_{0}\right)^{2}\right]^{1 / 2} . w=1 /\left[\sigma^{2}\left(F^{2}{ }_{0}\right)+\left[(a p)^{2}+b p\right]\right]$, where $p=\left[\max \left(F^{2}{ }_{0}, 0\right)+2 F^{2}{ }_{\mathrm{c}}\right] / 3$.

Table S2. Crystallographic data of TCB-OMe ${ }^{a}$

Empirical formula	$\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~B}_{10} \mathrm{O}$
Formula weight	350.44
Temperature (K)	$103(2)$
Wavelength (\AA)	0.71075
Crystal system, space group	Triclinic, $P-1$
Unit cell dimensions	$a=7.0713(12)$
	$b=10.2615(16)$
	$c=14.668(3)$
	$\alpha=109.044(8)$
	$\beta=93.259(7)$
	$\gamma=104.545(7)$
$V\left(\AA^{3}\right)$	$962.6(3)$
Z, calculated density $\left(\mathrm{Mg} \mathrm{m}^{-3}\right)$	$2,1.209$
Absorption coefficient	0.064
$F(000)$	364
Crystal size (mm)	$0.30 \times 0.10 \times 0.10$
θ range for data collection	$3.01-27.37$
Limiting indices	$-9 \leq h \leq 9,-13 \leq k \leq 12,-19 \leq l \leq 18$
Reflections collected $($ unique $)$	$9234 / 4288[R($ int $)=0.1364]$
Completeness to theta $=27.37$	0.975
Max. and min. transmission	0.981 and 0.994
Goodness-of-fit on F^{2}	1.027
Final R indices $[I>2 \sigma(I)]^{b}$	$R_{1}=0.0939, \mathrm{w} R 2=0.1952$
R indices (all data)	$\mathrm{R} 1=0.1923, \mathrm{wR} 2=0.2415$

${ }^{a}$ The structures were solved by direct method (SHELXT) ${ }^{2}$ and refined by full-matrix least-squares procedures based on F^{2} (SHELX-2014/7). ${ }^{3}{ }^{b} R_{1}=\Sigma\left(\left|F_{0}\right|-\mid F_{\mathrm{c}}\right) / \Sigma\left|F_{0}\right| . \quad \mathrm{w} R_{2}=\left[\Sigma w\left(F^{2}{ }_{0}-F^{2}{ }_{\mathrm{c}}\right)^{2 /}\right.$ $\left.\Sigma w\left(F^{2}\right)^{2}\right]^{1 / 2} . w=1 /\left[\sigma^{2}\left(F^{2}\right)+\left[(a p)^{2}+b p\right]\right]$, where $p=\left[\max \left(F^{2}{ }_{0}, 0\right)+2 F_{c}^{2}\right] / 3$.

Figure S2. PL spectra of $\mathbf{T C B}-\mathrm{NMe}_{2}\left(1.0 \times 10^{-5} \mathrm{M}\right)$ in various solvents.

Figure S3. Stenens-Ban plots from the PL spectra of (a) TCB-MeO, (b) TCB-(MeO) ${ }_{3}$ and (c) TCB-NMe ${ }_{2}$.

Figure $\mathbf{S 4}$. Emission spectrum of $\mathbf{T C B}-\mathbf{N M e}_{2}$ in the solid state.

Figure S5. Emission spectra in 2-methyltetrahydrofuran at 77 K .

Excited state

Figure S6. Molecular orbitals and energy levels of the parallel and twisted conformations of TCB-H and TCB-OMe in the ground and excited states. Calculations for the ground and excited states were performed with DFT and TD-DFT at the CAM-B3LYP/6-31+G(d,p)//B3LYP/6$31 \mathrm{G}(\mathrm{d}, \mathrm{p})$ level, respectively.

References

1. Nishino, K.; Morisaki, Y.; Tanaka, K.; Chujo, Y. New J. Chem. 2017, 15, 10550-10554.
2. Sheldrick, G. M. A short history of SHELX, Acta Cryst. (2008). A64, 112-122.
3. Sheldrick, G. M. SHELXTL Version 2014/7. http://shelx.uniac.gwdg.de/SHELX/index.php.
