Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

Supporting information

Molecular engineering of Ga-ketoiminates: Synthesis, structure and evaluation as precursors for the additive-free spin-coated deposition of gallium oxide thin films Richard O'Donoghue,^a Shafiqur Rahman,^a Bert Mallick,^a Manuela Winter,^a Detlef Rogalla,^b Hans-Werner Becker^b and Anjana Devi^a*

Figure S1. ¹H NMR spectrum of compound $[1] - [Ga(eeki)_3]$.

Figure S2. ¹H NMR spectrum of compound [**2**] – [Ga(mpki)₃]. * = Ligand.

Figure S3. ¹H NMR spectrum of compound [**3**] – [Ga(meki)₃]. * = Ligand.

Figure S4. ¹H NMR spectrum of compound [4] – [Ga(ipki)Cl₂].

Figure S5. ¹H NMR spectrum of compound $[5] - [Ga(ipki)(NMe_2)_2]$.

Figure S6. ¹H NMR spectrum of compound [6] – [Ga(epki)Cl₂]. * = Ligand.

Figure S7. ¹H NMR spectrum of compound [7] – [Ga(ipki)₂Cl].* = Ligand

Figure S8. EI-MS spectrum of compound [1].

Figure S9. Proposed fragmentation pattern for the EI-MS data in Figure S2

Table S1. Overview of the fragments observed in the EI-MS spectra of compound [4].

Fragments	m / z	Intensity [%]
$[M^{+\cdot}]$	281.0	17.65
[M ⁺⁻ - ⁻ CH ₃]	264.0	100.00
[M ⁺⁻ - ⁻ Cl]	244.0	54.99
[M ⁺⁻ - CH ₃ - Cl]	228.0	71.23
$[M^+ - CH(CH_3)_2 - CH_3]$	186.0	9.03
[Ligand ⁺⁻]	140.9	18.66
[M ⁺⁻ - 1x Ligand]	138.9	13.71
$[Ga^{+}]$	68.9	15.18
$[H_2CCHCH_3^{+\cdot}]$	42.0	44.92
$[H_2CCH^+]$	27.0	14.06

 Table S2.
 Overview of the fragments observed in the EI-MS spectra of compound [5].

Fragments	m / z	Intensity [%]
[M ⁺⁻]	298.2	1.53
$[M^+ - N(CH_3)_2]$	253.1	78.75
$[M^+ - 2N(CH_3)_2]$	209.3	47.40
$[M^+ - 2N(CH_3)_2 - 2CH_3]$	166.0	1.53
[Ligand ⁺⁻]	140.1	0.78
[Ligand ⁺ - CH ₃]	108.1	7.59
$[Ligand^+ - 2x CH_3]$	83.1	7.33
$[Ga^{+}]$	68.9	48.22
$[H_2CCHCH_3^{+-}]$	42.0	100.00
$[H_2CCH^+]$	27.0	12.04

Table S3. Overview of the fragments observed in the EI-MS spectra of compound [6].

Fragments	m / z	Intensity [%]
$[M^{+\cdot}]$	474.2	1.21
[M ⁺⁻ - ⁻ Cl]	439.2	64.74
$[M^+ - Cl - OCH_2CH_3]$	395.2	21.46
$[M^+ - Cl - 2CH_2CH_2OCH_2CH_3]$	292.1	6.53
[M ⁺ - Cl - 2CH ₂ CH ₂ OCH ₂ CH ₃	223.1	2.55
- 4CH3]		
$[Ligand^{+}]$	186.2	18.42
$[Ga^{+}]$	68.9	3.20
$[H_2CCHCH_3^{+-}]$	42.0	7.80
$[H_2CCH^+]$	27.0	4.41

Table S4. Overview of the fragments observed in the EI-MS spectra of compound [7].

Fragments	m / z	Intensity [%]
[M ⁺⁻]	384.2	26.70
$[M^{+} - CH_{3}]$	371.1	21.46
[M ⁺⁻ - ⁻ Cl]	349.2	90.83
$[M^+ - Cl - 4x CH_3]$	291.1	13.66
$[M^+ - Cl - 3x CH_3 - CH(CH_3)_2]$	264.1	26.77
$[M^+ - Cl - 4x CH_3 - CH(CH_3)_2]$	249.1	22.47
$[M^+ - 1x Ligand]$	244.0	100.00
$[M^+ - 1x Ligand - CH_3]$	228.0	18.54
$[M^+ - 1x Ligand - OCCH_3]$	202.0	35.37
[Ligand ⁺⁻]	140.1	68.12
[Ligand ⁺ - CH ₃]	126.1	23.61
$[Ligand^+ - 2x CH_3]$	108.1	18.36
[Ligand ⁺ - CH ₃ - CH(CH ₃) ₂]	83.1	24.84
$[Ga^+]$	68.9	33.00
$[H_2CCHCH_3^{+-}]$	42.0	73.07
$[H_2CCH^+]$	27.0	21.51

Figure S10. XRD pattern of the gallium oxide thin film from a process deposited on Si(100) using compound [1] with 25 spin coating cycles at a hotplate temperature of 350 °C after annealing at 850 °C for 2 h under a mbient conditions. The β -gallium oxide reference pattern in red corresponds to the ICSD no. 34243. The Inset shows a close up of the obtained reflexes.* = silicon substrate.

Figure S11. Tauc plot derived from the transmittance data of the sample deposited with 5 spin-cycles.

Figure S12. Tauc plot derived from the transmittance data of the sample deposited with 20 spin-cycles.

Figure S13. Tauc plot derived from the transmittance data of the sample deposited with 25 spin-cycles