Electronic Supplementary Information

Palladium-Catalyzed Three-Component Reaction for Synthesis 3,3-Disubstituted Allylic Alcohols with Regionand Stereoselective

Gang Hu, Jingtao Wang, Zefei Li, Ping Gong* ,Yajing Liu*

Key Laboratory of Structure-based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, 103 Wenhua Road, Shenhe District, Shenyang 110016, People's Republic of China

1. General Information

Unless otherwise noted, all reagents and solvents were obtained from commercial sources and used without further purification. Solvents were dried using standard methods and distilled before use. Reactions were monitored by thin-layer chromatography (TLC) on silica plates (F-254) and visualized under UV light. All ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Bruker ARX-400, 400 MHz spectrometers with TMS as an internal standard. The peak patterns are indicated as follows: s, singlet; d, doublet; t , triplet; m, multiplet; q, quartet. The coupling constants, J, are reported in hertz (Hz). HRMS analysis was performed on a Q-TOF mass analyzer using the ESI ionization method. Column chromatography was run on silica gel (200-300 mesh) from Qingdao Ocean Chemicals (Qingdao, Shandong, China).

2. General Procedure and Product Characterization

2.1 The Optimal Experimental Conditions

Representative procedure for the synthesis of diethyl (E)-2-(4-hydroxy-2-phenylbut-2-en-1yl)malonate (4aa) products: allenic alcohol 1a ($70 \mathrm{mg}, 0.10 \mathrm{mmol}$), iodobenzene 2a ($244 \mathrm{mg}, 0.12$ mmol, 1.2 equiv.) and diethyl malonate 3a ($191 \mathrm{mg}, 0.12 \mathrm{mmol}$, 1.2 equiv.) were consecutively added to a sealed tube charged with a mixture of $\mathrm{K}_{2} \mathrm{CO}_{3}(413 \mathrm{mg}, 0.30 \mathrm{mmol}, 3.0$ equiv.), $\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\right](57 \mathrm{mg}, 0.005 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ in $\mathrm{THF}(3 \mathrm{~mL})$, under an atmosphere of nitrogen. The reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for 10 h . After the reaction was complete, water (10 mL) was added, and the solution was extracted with dichloromethane. The organic phase was separated, washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo to give the crude product, which was purified by column chromatography on silica gel with a mixture of dichloromethane/methanol $(60: 1, \mathrm{v} / \mathrm{v})$ to afford the desired product 4aa.

2.2 The Structural Confirmation of the representative compound 4aa

The chemical structures of the target compounds were confirmed by ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, and MS spectra. The representative compound 4aa was found to have the molecular formula determined by mass spectroscopy. ${ }^{1} \mathrm{H}$ NMR spectroscopy showed that all the protons of $\mathbf{4 a a}$ resonated with the expected chemical shifts (Figure 2SA), the exchangeable signal observed at δ $=4.79$ was assigned to $-\mathrm{OH}($ Figure $\mathbf{2 S B})$. The results of ${ }^{13} \mathrm{C}$ NMR experiment further confirmed its chemical structure. In addition, the configuration of alkene double bond was investigated by NOESY NMR. As shown in (Figure 1SB), an evident NOE signal was observed between protons of H^{1} (vinyl- $\left.\mathrm{CH}_{2}-\mathrm{C}, \delta_{1}=3.05 \mathrm{ppm}\right)$ and $\mathrm{H}^{2}\left(\mathrm{C}-\mathrm{CH}_{2}-\mathrm{OH}, \delta_{2}=4.15 \mathrm{ppm}\right.$), which existed only in the E isomer due to the appropriate intramolecular H-H distance (Figure 1SA). Thus, all the related compounds were assigned the same E-configuration by analogy unambiguously.
 $\delta_{1}=3.05 \mathrm{ppm}$

E-4aa

Z-4aa
A

Figure 1SA

Figure 1SB

Figure 2SA

4 aa

Figure 2SB

2.3 Product Characterization

4aa,74\%

diethyl (E)-2-(4-hydroxy-2-phenylbut-2-en-1-yl)malonate (4aa)

Yield: 74\% (colorless oil). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 7.37-7.31$ (m, 4H), $7.30-7.25$ (m, $1 \mathrm{H}), 5.81(\mathrm{t}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{t}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{t}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.04-3.98(\mathrm{~m}, 4 \mathrm{H})$, $3.25(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.12(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO- d_{6}) $\delta 168.74,141.08,136.34,132.62,128.84,127.75,126.72,61.44,58.37,50.72,28.77,14.22$. HRMS (ESI-Q-TOF, m/z) calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{5}[\mathrm{M}+\mathrm{Na}]^{+}: 325.0836$, found $[\mathrm{M}+\mathrm{Na}]^{+}$: 325.0874 .

diethyl (E)-2-(4-hydroxy-2-(p-tolyl)but-2-en-1-yl)malonate (4ab)

Yield: 75% (colorless oil). ${ }^{1} \mathrm{H}$ NMR (600 MHz, DMSO- d_{6}) $\delta 7.22$ (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}$), 7.15 (d, $J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.78(\mathrm{t}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.04-3.99(\mathrm{~m}, 4 \mathrm{H}), 3.23(\mathrm{t}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.01(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 1.12(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz, DMSO- $\left.d_{6}\right) \delta$ $168.67,137.99,136.92,136.00,131.70,129.37,126.48,61.35,58.25,50.58,28.62,20.99,14.17$. HRMS (ESI-Q-TOF, m/z) calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{5}[\mathrm{M}+\mathrm{Na}]^{+}: 343.1521$, found $[\mathrm{M}+\mathrm{Na}]^{+}$: 343.1553.

diethyl (E)-2-(4-hydroxy-2-(m-tolyl)but-2-en-1-yl)malonate (4ac)

Yield: 42% (colorless oil). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 7.23(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{dd}, J=$ $14.2,7.0 \mathrm{~Hz}, 3 \mathrm{H}), 5.78(\mathrm{t}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.04-3.99(\mathrm{~m}, 4 \mathrm{H}), 3.24(\mathrm{t}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 1.12(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO- d_{6}) $\delta 168.76,141.07,137.91,136.37,132.39,128.72,128.42,127.40,123.81,61.44,58.34$, 50.72, 28.78, 21.50, 14.25. HRMS (ESI-Q-TOF, m / z) calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{5}[\mathrm{M}+\mathrm{Na}]^{+}: 343.1521$, found $[\mathrm{M}+\mathrm{Na}]^{+}: 343.1556$.

diethyl (E)-2-(4-hydroxy-2-(4-methoxyphenyl)but-2-en-1-yl)malonate (4ad)

Yield: 71\% (colorless oil). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 7.26$ (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}$), 6.90 (d, $J=$ $8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.72(\mathrm{t}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{t}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{t}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.06-3.98(\mathrm{~m}$, 4H), $3.23(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.12(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO) $\delta 168.77,159.09,135.80,133.28,131.02,127.84,114.25,61.43,58.33,55.53,50.74,28.76$, 14.27. HRMS (ESI-Q-TOF, m / z) calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{6}[\mathrm{M}+\mathrm{Na}]^{+}: 359.1471$, found $[\mathrm{M}+\mathrm{Na}]^{+}$: 343.1431 .

diethyl (E)-2-(4-hydroxy-2-(2-methoxyphenyl)but-2-en-1-yl)malonate (4ae)

Yield: 53% (colorless oil). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 7.27$ (ddd, $J=8.2,7.2,1.9 \mathrm{~Hz}, 1 \mathrm{H}$), $7.00-6.88(\mathrm{~m}, 3 \mathrm{H}), 5.48(\mathrm{t}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.02-3.96(\mathrm{~m}, 4 \mathrm{H}), 3.76(\mathrm{~s}$, $3 \mathrm{H}), 3.11(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.11(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO- d_{6}) $\delta 168.84,156.83,136.13,133.56,130.87,130.75,129.22,120.81,111.44,61.36,57.99$, 55.71, 50.83, 29.64, 14.25. HRMS (ESI-Q-TOF, m/z) calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{6}[\mathrm{M}+\mathrm{Na}]^{+}: 359.1471$, found $[\mathrm{M}+\mathrm{Na}]^{+}: 359.1428$.

diethyl (E)-2-(2-(4-fluorophenyl)-4-hydroxybut-2-en-1-yl)malonate (4af)

Yield: 58% (colorless oil). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 7.37$ (dd, $J=8.2,5.7 \mathrm{~Hz}, 2 \mathrm{H}$), 7.16 (t , $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.77(\mathrm{t}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{t}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{t}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.04-3.99$ $(\mathrm{m}, 4 \mathrm{H}), 3.24(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.02(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.12(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{DMSO}) \delta 168.70,161.99\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=245.4 \mathrm{~Hz}\right), 137.53\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=3.0 \mathrm{~Hz}\right), 135.42,132.77,128.76(\mathrm{~d}$, $J_{\mathrm{C}-\mathrm{F}}=8.1 \mathrm{~Hz}$), $115.57\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=21.2 \mathrm{~Hz}\right), 61.45,58.31,50.67,40.21,28.86,14.24$. HRMS (ESI-QTOF, m / z) calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{FO}_{5}[\mathrm{M}+\mathrm{Na}]^{+}: 347.1271$, found $[\mathrm{M}+\mathrm{Na}]^{+}: 347.1292$.

diethyl (E)-2-(2-(4-bromophenyl)-4-hydroxybut-2-en-1-yl)malonate (4ag)

Yield: 59\% (colorless oil). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 7.53$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.29 (d, $J=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.82(\mathrm{t}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.77(\mathrm{t}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{t}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.04-3.99(\mathrm{~m}$, 4H), $3.24(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.12(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO- d_{6}) $\delta 168.67,140.32,135.27,133.42,131.74,128.93,120.93,61.48,58.33,50.63,28.57,14.26$. HRMS (ESI-Q-TOF, m/z) calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{BrO}_{5}[\mathrm{M}+\mathrm{Na}]^{+}: 407.0470$, found $[\mathrm{M}+$ $\mathrm{Na}]^{+}: 407.0452$.

diethyl (E)-2-(4-hydroxy-2-(4-(trifluoromethyl)phenyl)but-2-en-1-yl)malonate (4ah)

Yield: 36% (colorless oil). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 7.70(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}$), 7.56 (d, $J=$ $8.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.92(\mathrm{t}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{t}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{t}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.03-3.98(\mathrm{~m}$, 4H), $3.27(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.07(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.11(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO- $\left._{6}\right) \delta 168.63,145.30,135.24,134.95,128.15\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=31.3 \mathrm{~Hz}\right), 127.59,125.72\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=4.0 \mathrm{~Hz}\right)$, 61.48, 58.36, 50.62, 28.57, 14.21. HRMS (ESI-Q-TOF, m/z) calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{O}_{5}[\mathrm{M}+$ $\mathrm{Na}]^{+}: 397.1239$, found $[\mathrm{M}+\mathrm{Na}]^{+}: 397.1235$.

diethyl (E)-2-(2-(3-chloro-4-fluorophenyl)-4-hydroxybut-2-en-1-yl)malonate (4ai)

Yield: 37% (colorless oil). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 7.53$ (dd, $J=7.2,1.9 \mathrm{~Hz}, 1 \mathrm{H}$), $7.41-$ $7.27(\mathrm{~m}, 2 \mathrm{H}), 5.82(\mathrm{t}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.16-4.07(\mathrm{~m}, 2 \mathrm{H}), 4.04-3.99(\mathrm{~m}$, 4H), $3.26(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.12(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO- $\left.d_{6}\right) \delta 168.67,156.96\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=247.4 \mathrm{~Hz}\right), 139.15,134.53,134.01,128.87,127.59\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=7.0 \mathrm{~Hz}\right)$, $119.85\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=18.1 \mathrm{~Hz}\right), 117.20\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=21.2 \mathrm{~Hz}\right), 61.48,58.27,50.62,28.72,14.23$. HRMS (ESI-QTOF, m / z) calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{ClFO}_{5}[\mathrm{M}+\mathrm{Na}]^{+}: 381.0881$, found $[\mathrm{M}+\mathrm{Na}]^{+}: 381.0889$.

diethyl (E)-2-(2-(2,4-difluorophenyl)-4-hydroxybut-2-en-1-yl)malonate (4aj)
Yield: 38% (colorless oil). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 7.49-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.14(\mathrm{~m}$, $1 \mathrm{H}), 5.84(\mathrm{t}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{br}, 1 \mathrm{H}), 4.15-4.10(\mathrm{~m}, 2 \mathrm{H}), 4.05-3.99(\mathrm{~m}, 4 \mathrm{H}), 3.27(\mathrm{t}, J=7.9$ $\mathrm{Hz}, 1 \mathrm{H}), 3.01(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.12(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 168.67$, $150.93\left(\mathrm{dd}, J_{\mathrm{C}-\mathrm{F}}=12.1 \mathrm{~Hz}, J_{\mathrm{C}-\mathrm{F}}=53.5 \mathrm{~Hz}\right), 148.22\left(\mathrm{dd}, J_{\mathrm{C}-\mathrm{F}}=13.1 \mathrm{~Hz}, J_{\mathrm{C}-\mathrm{F}}=54.5 \mathrm{~Hz}\right), 138.87\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=2.0\right.$ $\mathrm{Hz}), 134.58,133.88,123.68\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=3.0 \mathrm{~Hz}\right), 117.78\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=17.1 \mathrm{~Hz}\right), 115.84\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=18.1 \mathrm{~Hz}\right), 61.47$, 58.28, 50.60, 28.65, 14.24. HRMS (ESI-Q-TOF, m/z) calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~F}_{2} \mathrm{O}_{5}[\mathrm{M}+$ $\mathrm{Na}]^{+}: 365.1176$, found $[\mathrm{M}+\mathrm{Na}]^{+}: 365.1188$.

diethyl (E)-2-(2-(4-cyanophenyl)-4-hydroxybut-2-en-1-yl)malonate (4ak)
Yield: 58% (colorless oil). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 7.81$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.55 (d, $J=$ $8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.95(\mathrm{t}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{~s}, 1 \mathrm{H}), 4.16(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.03-3.98(\mathrm{~m}, 4 \mathrm{H}), 3.26(\mathrm{t}$, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.11(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO- d_{6}) δ $168.60,145.90,135.64,135.13,132.81,127.70,119.25,110.30,61.51,58.39,50.61,28.34,14.24$.

HRMS (ESI-Q-TOF, m / z) calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{Na}]^{+}: 354.1371$, found $[\mathrm{M}+$ $\mathrm{Na}]^{+}: 354.1383$.

diethyl (E)-2-(4-hydroxy-2-(4-(methoxycarbonyl)phenyl)but-2-en-1-yl)malonate (4al)

Yield: 54% (colorless oil). ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 7.93$ (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), 7.49 (d, $J=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.94(\mathrm{t}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{~s}, 1 \mathrm{H}), 4.14-4.18(\mathrm{~m}, 2 \mathrm{H}), 4.03-3.98(\mathrm{~m}, 4 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H})$, $3.26(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.11(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO- d_{6}) $\delta 168.64,166.44,145.85,135.45,134.82,129.78,128.82,127.02,61.48,58.39,52.54$, 50.66, 28.46, 14.23. HRMS (ESI-Q-TOF, m / z) calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{7}[\mathrm{M}+\mathrm{Na}]^{+}: 387.1421$, found $[\mathrm{M}+\mathrm{Na}]^{+}: 387.1439$.

4an,46\%

diethyl (E)-2-(4-hydroxy-2-(thiophen-2-yl)but-2-en-1-yl)malonate (4an)

Yield: 46% (colorless oil). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 7.40(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=$ $2.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{dd}, J=5.1,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.97(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.77(\mathrm{t}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.14-$ $3.99(\mathrm{~m}, 6 \mathrm{H}), 3.51(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.13(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- $\left.d_{6}\right) \delta 168.77,144.65,131.15,130.01,128.20,125.18,124.19,61.57,57.99,50.99,29.03$, 14.28. HRMS (ESI-Q-TOF, m/z) calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}: 335.0929$, found $[\mathrm{M}+$ $\mathrm{Na}]^{+}: 335.0918$.

5aa, 74\%
dimethyl (E)-2-(4-hydroxy-2-phenylbut-2-en-1-yl)malonate (5aa)
Yield: 74% (colorless oil). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 7.38-7.27(\mathrm{~m}, 5 \mathrm{H}), 5.80(\mathrm{t}, J=6.3$ $\mathrm{Hz}, 1 \mathrm{H}), 4.13(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.55(\mathrm{~s}, 6 \mathrm{H}), 3.30(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 169.16,141.03,136.26,132.70,128.88,127.79,126.71,58.30,52.74$, 50.55, 28.88. HRMS (ESI-Q-TOF, m / z) calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{5}[\mathrm{M}+\mathrm{Na}]^{+}: 301.1052$, found $[\mathrm{M}+$ $\mathrm{Na}]^{+}: 301.1038$.

5ab, 62\%

(E)-3-(4-hydroxy-2-phenylbut-2-en-1-yl)pentane-2,4-dione (5ab)

Yield: 62% (colorless oil). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 7.40-7.28(\mathrm{~m}, 5 \mathrm{H}), 5.76(\mathrm{t}, J=6.2$ $\mathrm{Hz}, 1 \mathrm{H}), 4.72(\mathrm{~s}, 1 \mathrm{H}), 4.12(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.72(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.05$ (s, 6H). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 204.42,141.32,137.01,132.15,129.00,127.81,126.74,65.00$, 58.44, 30.58, 28.01. HRMS (ESI-Q-TOF, m/z) calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 269.1154$, found $[\mathrm{M}+\mathrm{Na}]^{+}: 269.1168$.

5ac, 51\%

diethyl (E)-2-(4-hydroxy-2-phenylbut-2-en-1-yl)-2-methylmalonate (5ac)

Yield: 51% (colorless oil). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 7.32-7.21(\mathrm{~m}, 5 \mathrm{H}), 5.72(\mathrm{t}, J=6.5$ $\mathrm{Hz}, 1 \mathrm{H}), 4.78(\mathrm{~s}, 1 \mathrm{H}), 4.12-4.08(\mathrm{~m}, 2 \mathrm{H}), 3.83(\mathrm{dq}, J=10.8,7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.85-3.80(\mathrm{~m}, 2 \mathrm{H}), 3.70-$
$3.66(\mathrm{~m}, 2 \mathrm{H}), 3.12(\mathrm{~s}, 2 \mathrm{H}), 1.14(\mathrm{~s}, 3 \mathrm{H}), 1.05(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz , DMSO- d_{6}) δ $171.34,142.85,135.94,135.10,128.23,127.38,127.25,61.10,58.57,52.98,34.48,19.72,13.97$. HRMS (ESI-Q-TOF, m/z) calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{5}[\mathrm{M}+\mathrm{Na}]^{+}: 343.1521$, found $[\mathrm{M}+$ $\mathrm{Na}]^{+}: 343.1530$.

5ad, 50\%
diethyl (E)-2-benzyl-2-(4-hydroxy-2-phenylbut-2-en-1-yl)malonate (5ad)
Yield: 50% (colorless oil). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 7.43-7.15(\mathrm{~m}, 8 \mathrm{H}), 7.04(\mathrm{~d}, J=6.5$ $\mathrm{Hz}, 2 \mathrm{H}), 5.63(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.81-3.64(\mathrm{~m}, 4 \mathrm{H}), 3.14(\mathrm{~s}, 2 \mathrm{H}), 2.95(\mathrm{~s}, 2 \mathrm{H})$, $1.00(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 170.49$, 143.24, 136.69, 136.24, 135.64, $130.24,128.41,128.33,127.55,127.43,127.09,61.14,58.50,33.93,13.93$. HRMS (ESI-Q-TOF, m / z) calcd for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{O}_{5}[\mathrm{M}+\mathrm{Na}]^{+}: 419.1834$, found $[\mathrm{M}+\mathrm{Na}]^{+}: 419.1850$.

5ae,36\%
diethyl (E)-2-(4-hydroxy-2-phenylbut-2-en-1-yl)-2-(4-methylbenzyl)malonate (5ae)
Yield: 36% (colorless oil). ${ }^{1} \mathrm{H}$ NMR (600 MHz, DMSO- d_{6}) $\delta 7.34-7.24(\mathrm{~m}, 5 \mathrm{H}), 7.04(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 2 \mathrm{H}), 6.92(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.63(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.80-3.67(\mathrm{~m}$, $4 \mathrm{H}), 3.12(\mathrm{~s}, 2 \mathrm{H}), 2.90(\mathrm{~s}, 2 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 1.02(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz , DMSO- d_{6}) δ $170.43,143.17,136.22,136.01,135.48,133.36,130.03,128.90,128.23,127.47,127.33,61.03,58.43$, 38.90, 33.63, 20.97, 13.87. HRMS (ESI-Q-TOF, m/z) calcd for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{O}_{5}[\mathrm{M}+\mathrm{Na}]^{+}: 433.1991$, found $[\mathrm{M}+\mathrm{Na}]^{+}: 433.2007$.

5af,44\%

diethyl (E)-2-(4-cyanobenzyl)-2-(4-hydroxy-2-phenylbut-2-en-1-yl)malonate (5af)
Yield: 44% (colorless oil). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 7.72(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.21(\mathrm{~m}$, $7 \mathrm{H}), 5.67(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.81-3.61(\mathrm{~m}, 4 \mathrm{H}), 3.19(\mathrm{~s}, 2 \mathrm{H}), 3.03(\mathrm{~s}, 2 \mathrm{H})$, $0.98(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz, DMSO- d_{6}) $\delta 170.11,142.92,142.89,135.85,135.69$, 132.16, 131.37, 131.32, 128.29, 127.46, 119.18, 109.89, 61.25, 58.39, 39.29, 34.29, 13.79. HRMS (ESI-Q-TOF, m/z) calcd for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{O}_{5}[\mathrm{M}+\mathrm{Na}]^{+}: 444.1787$, found $[\mathrm{M}+\mathrm{Na}]^{+}: 444.1751$.

5ag, 48\%
diethyl (\boldsymbol{E})-2-(4-hydroxy-2-phenylbut-2-en-1-yl)-2-(4-nitrobenzyl)malonate (5ag)
Yield: 48% (colorless oil).1H NMR ($600 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 8.12$ (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$), $7.35-7.25$ (m, $7 \mathrm{H}), 5.69(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.79-3.64(\mathrm{~m}, 4 \mathrm{H}), 3.21(\mathrm{~s}, 2 \mathrm{H}), 3.08(\mathrm{~s}, 2 \mathrm{H})$, $0.98(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 170.15,146.81,145.25,142.99,135.94$, 135.82, 131.71, 128.40, 127.57, 123.39, 61.40, 58.48, 39.11, 34.45, 13.88. HRMS (ESI-Q-TOF, m / z) calcd for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{O}_{5}[\mathrm{M}+\mathrm{Na}]^{+}: 464.1685$, found $[\mathrm{M}+\mathrm{Na}]^{+}: 464.1677$.

80	170	160	150	140	130	120	110	100	$\begin{gathered} 90 \\ \mathrm{fl}(\mathrm{ppm}) \end{gathered}$	80	70	60	50	40	30	20	10	0

$$
\begin{array}{lllllllllllllllllllllllllllll}
\hline 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0
\end{array}
$$

4aj

1	1	1	1	1	1	1	1		1	1	1	1	1	1	1	1	1
170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
								f1 (p									

