Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Polypyrrole nanocomposites doped by functional ionic liquids for high performance

supercapacitors

Peng Cao,¹ Yuxia Fan,¹ Junrui Yu,¹ Rongmin Wang,¹ Pengfei Song,¹ Yubing Xiong*1,²

¹ College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou

730070, China

² Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China

* Author to whom correspondence should be addressed; E-Mail: yubing_xiong@163.com; Tel.: +86-931-7970-358; Fax: +86-931-7970-075.

Figure S1 ¹H NMR spectrum of [VCMIm]Cl in D₂O.

Figure S2 13 C NMR spectrum of [VCMIm]Cl in D₂O.

Figure S3 ¹H NMR spectrum of [SBVIm][HSO₄] in D₂O.

Figure S4 ¹³C NMR spectrum of [SBVIm][HSO₄] in D₂O.

 Table S1 Element composition of IL@PPy nanocomposites measured by energy dispersive spectrometer (EDS).

Entry	[VCMIm]Cl : Py : FeCl ₃	C %	N%	O %	Cl%
1V1P1F	1:1:1	62.31	17.57	11.77	7.39
3V1P1F	3:1:1	64.65	15.95	12.01	7.66
4V1P1F	4:1:1	65.07	15.63	11.64	8.35
3S1P1F	3:1:1 ([SBVIm][HSO ₄] : Py : FeCl ₃)	59.01	16.20	19.10	5.69 (S%)

Figure S5. N₂ absorption-desorption isotherms of pure PPy nanoparticles and IL@PPy nanocomposites. The specific surface areas of PPy:FeCl₃=1:1 and [VCMIm]Cl:PPy:FeCl₃=1:1:1 are 73.8 m² g⁻¹ and 80.1 m² g⁻¹ respectively.

Figure S6. SEM mapping photograph of C, N, O and Cl elements within [VCMIm]Cl@PPy (3:1:1) All the scale bars are 50 μm.

Figure S7. XPS survey scans of IL@PPy nanocomposites indicating the existence of carbon, oxygen, nitrogen, chlorine and sulfur.

Figure S8. Specific capacitances and capacitance retention at various current densities.

Figure S9. Nyquist plots of the IL-doped PPy. Inset: equivalent circuit used to fit the impedance

spectrum.

Figure S10. EIS curves of IL@PPy electrode materials with different composition.

Table S2 Fitted EIS parameters of symmetric supercapacitors based on the IL-doped PPy

electrodes.

Electrode materials	Ratio	Rs (Ω)	Rct (Ω)
[VCMIm]Cl:Py:FeCl ₃	3:1:1	1.03	0.09
[VCMIm]Cl:Py:FeCl ₃	4:1:1	1.38	0.42
[SBVIm][HSO ₄]:Py:FeCl ₃	3:1:1	2.04	0.43
[SBVIm][HSO ₄]:Py:FeCl ₃	4:1:1	1.32	0.40

CPs based composites	Power density	Energy density	Pafaranca
CI s-based composites	${ m W}~{ m Kg}^{-1}$	Wh Kg ⁻¹	Kelefence
PPy-MnO ₂	901.7	25.8	1
CNT-PPy-MnO ₂ -AC	100	38.42	2
PPy/MO-2h	467.0	19.4	3
PPy-LGS	-	20.6	4
PPy coated fabric	799.2	11.1	5
Ag-PPy	500	30	6
GF-CNTs-PPy	2700	6.2	7
PPy-Graphene	3200	8.4	8
[VCMIm]Cl-PPy(3:1)	2226	40.2	This work

Table S3 Power and energy density of the electrode materials based PPy composites

Table S4 Specific capacitance of IL@PPy in this work, in comparison with several representative

 results with different dopants from recent publications.

Electrode	Specific	Scan rate or current	Electrolyte	reference
material	Capacitance	density	Electrolyte	
PPy-20 wt%	506 E a=1	5 mV/-1		0
MWNTs	506 F g 1	5 111 V S	1 M H ₂ SO ₄	9
RGO/PPy	352 F g ⁻¹	1 A/g	1 M H ₂ SO ₄	10
PPy/TSA	376 F g ⁻¹	3 mA m ⁻²	0.5 M Na ₂ SO ₄	11
PPy hydrogel-CC	400 F g^{-1}	0.2 A/g	1 M H ₂ SO ₄	12

CTAB@PPy	305 F g^{-1}	0.5 A/g	1 M KCl	13
s-G/PPy	310 F g ⁻¹	0.3 A/g	1 M KCl	14
AQDS/NDA	393 F g ⁻¹	0.5 A/g	$1 \text{ M H}_2 \text{SO}_4$	15
PPy/GNS	298.2 F g ⁻¹	$0.5 \ { m A} \ { m g}^{-1}$	1 M H ₂ SO ₄	16
R-G/Pys	180 F g ⁻¹	0.5 mA/g	$1 \text{ M H}_2\text{SO}_4$	17
HNTs/PPy	522 F g ⁻¹	5 mA cm^{-2}	0.5 M Na ₂ SO ₄	18
РРу	533 F g ⁻¹	5 mV s^{-1}	0.5 M H ₂ SO ₄	19
GO/PPy	650 F g ⁻¹	$0.45 \mathrm{~A~g^{-1}}$	1 M H ₂ SO ₄	20
GO/PPy	633 F g ⁻¹	1 A g^{-1}	1 M KCl	21
IL@PPy	520 F g ⁻¹	0.5 A/g	1 M KCl	This work

Reference

- W. D. He, C. G. Wang, F. W.Zhuge, X. L. Deng, X. J. Xua, T.Y. Zhai. Nano Energy, 2017, 35, 242–250.
- 2. Y. J. Zhou, H.Zhao, X.M. Mu, Nanoscale, 2015, 7, 14697–14706.
- J. Xu, D. X. Wang, L. L. Fan, Y. Yuan, W. Wei, R. N. Liu, S. J. Gu, W. L. Xu, Organic Electronics, 2015, 26, 292–299
- L. Zhu, L. Wu, Y. Sun, M. Li, J. Xu, Z. Bai, G. Liang, L. Liu, D. Fang, W. Xu, RSC Adv, 2014. 4 6261–6266.
- 5. B. Yue, C. Wang, X. Ding, G.G. Wallace, Electrochimica Acta, 2012, 68, 18–24
- 6. L.Yuan, C. Wan, X. Ye, Electrochimica Acta, 2016, 213, 115–123.
- Y. H. Lee, H.J. Choi, M.S. Kim, S. Noh, K. Ahn, K. Im, O. Kwon, H. Yoon, Scientific Reports, 2016, 6, 19822.
- L.J. Lei, Z.L. Li, W.H. Bin, L.J. Yi, S.Z. Xiang, L.X. David, Energy&Environmental Science, 2014, 7, 3709–3719
- 9. V. Khomenko, E. Frackowiak, F.Beguin, Electrochimica Acta, 2005, 50, 2499–2506.
- 10. H. H Chang, C. K. Chang, Y. C. Tsai, C. S. Liao, Carbon, 2012, 50, 2331–2336.
- Z. H. Dong, Y. Li. Wei, W. Shi, G. A. Zhang, Materials Chemistry and Physics, 2011, 131, 529–534.

- Y. Shi, L. J. Pan, B. R. Liu, Y. Q. Wang, Y. Cui, Z. A. Bao and G. H. Yu, Journal of Materials Chemistry A, 2014, 2, 6086–6091.
- Q.F. Wu, K.X. He, H.Y. Mi, X.G. Zhang, Materials Chemistry and Physics, 2007, 101, 367– 371.
- X.P. Zuo, Y.L. Zhang, L. Si, B. Zhou, B. Zhao, L.H. Zhu, X.Q. Jiang, Journal of Alloys and Compounds, 2016, 688, 140–148.
- Y.Q. Han, X.X. Gao, T.Q. Wang, M.S. He, T.X. Li, W.J. Li, Synthetic Metals, 2016, 217, 288–294.
- D.C. Zhang, X. Zhang, Y. Chen, P. Yu, C.H. Wang, Y.W. Ma, Journal of Power Sources, 2011, **196**, 5990–5996.
- 17. Y.Q. Han, L. Hao, X.G. Zhang, Synthetic Metals, 2010, 160, 2336–2340.
- 18. C. Yang, P. Liu, Y.Q. Zhao, Electrochimica Acta, 2010, 55, 6857-6864.
- D.P. Dubal, S.V. Patil, A.D. Jagadale, C.D. Lokhande, Journal of Alloys and Compounds, 2011, 509, 8183–8188.
- Y. Liu, H.H. Wang, J. Zhou, L.Y. Bian, E.W. Zhu, J.F. Hai, J. Tang, W.H. Tang, Electrochimica Acta, 2013, 112, 44–52.
- 21. J. Li, H.Q. Xie, Materials Letters, 2012, 78, 106-109.