Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

THE EFFECT OF THE CATALYST AND THE TYPE OF IONIC LIQUID ON THE HYDROSILYLATION PROCESS UNDER BATCH AND CONTINUOUS REACTION CONDITIONS

Magdalena Jankowska-Wajda,^{a*} Rafal Kukawka,^{a,b} Marcin Smiglak,^{a,b} Hieronim Maciejewski^{a,b}

^a Faculty of Chemistry, Adam Mickiewicz University, ul. Umultowska 89 b, 61-614 Poznan, Poland
^b Poznan Science and Technology Park, Adam Mickiewicz University Foundation, ul. Rubież 46, 61-612 Poznan, Poland
*magdajw@amu.edu.pl

Index:

• Hydrosilylation reaction in batch with using different IL/catalyst system – yields		S2-
	S9	
•	GC chromatograms	S10
•	GC/MS/MS chromatogram	S11
•	TGA analysis of Ionic Liquids	S13
•	ICP analysis	\$13
•	IC chromatograms	S14

Number of pages: 14

Number of Figures: 21

Number of Tables:

Hydrosilylation reaction in batch with using different IL/catalyst system - yields

 $\label{eq:Figure S1. Yield of hydrosilylation reaction using [Rh(cod)(\mu-OSiMe_3)]_2 as catalyst in [P_{8888}][NTf_2], [P_{44414}][NTf_2] and [P_{4441}][NTf_2] and [P_{4441}][$

Figure S2. Yield of hydrosilylation reaction using $[Rh(\mu-Cl)(cod)]_2$ as catalyst in $[P_{8888}][NTf_2]$, $[P_{44414}][NTf_2]$ and $[P_{4441}][NTf_2]$

Figure S3. Yield of hydrosilylation reaction using $[Rh(PPh_3)_3CI]$ as catalyst in $[P_{8888}][NTf_2]$, $[P_{44414}][NTf_2]$ and $[P_{4441}][NTf_2]$

 $[\]label{eq:Figure S4. Yield of hydrosilylation reaction using [Pt_2{(CH_2=CHSiMe_2)_2O_3] as catalyst in [P_{8888}][NTf_2], [P_{44414}][NTf_2] and [P_{4441}][NTf_2] and [P_{4441}][NTf_2] and [P_{44414}][NTf_2] and [P_{44414}][NT$

 $\label{eq:Figure S5. Yield of hydrosilylation reaction using [Pt(PPh_3)_4] as catalyst in [P_{8888}][NTf_2], [P_{44414}][NTf_2] and [P_{4441}][NTf_2] an$

 $\label{eq:Figure S6. Yield of hydrosilylation reaction using [PtCl_2(PPh_3)_2] as catalyst in [P_{8888}][NTf_2], [P_{44414}][NTf_2] and [P_{4441}][NTf_2] and [P_{4441}][NTf_2$

 $\label{eq:Figure S7. Yield of hydrosilylation reaction using K_2 PtCl_4 as catalyst in [P_{8888}] [NTf_2], [P_{44414}] [NTf_2] and [P_{4441}] [NTf_2] and [P_{$

 $\label{eq:Figure S8. Yield of hydrosilylation reaction using K_2 PtCl_4 as catalyst in [P_{8888}] [NTf_2], [P_{44414}] [NTf_2] and [P_{4441}] [NTf_2] [NTf_2] and [P_{4441}] [NTf_2] [NTf_2]$

Figure S9. Yield of hydrosilylation reaction using [Pt₂{(CH₂=CHSiMe₂)₂O}₃] as catalyst in [P₄₄₄₁][MeSO₄] and [P₄₄₄₁][NTf₂]

Figure S10. Yield of hydrosilylation reaction using $[PtCl_2(PPh_3)_2]$ as catalyst in $[P_{4441}][MeSO_4]$ and $[P_{4441}][NTf_2]$

Figure S11. Yield of hydrosilylation reaction using $[Pt(PPh_3)_4]$ as catalyst in $[P_{4441}][MeSO_4]$ and $[P_{4441}][NTf_2]$

Figure S12. Yield of hydrosilylation reaction using K_2PtCl_4 as catalyst in $[P_{4441}][MeSO_4]$ and $[P_{4441}][NTf_2]$

Figure S13. Yield of hydrosilylation reaction using K_2PtCl_6 as catalyst in $[P_{4441}][MeSO_4]$ and $[P_{4441}][NTf_2]$

Figure S14. Yield of hydrosilylation reaction using $[Rh(cod)(\mu-OSiMe_3)]_2$ as catalyst in $[P_{4441}][MeSO_4]$ and $[P_{4441}][NTf_2]$

 $\label{eq:Figure S15. Yield of hydrosilylation reaction using [Rh(PPh_3)Cl) as catalyst in [P_{4441}][MeSO_4] \ and [P_{4441}][NTf_2] \ and [P_{4441$

 $\label{eq:Figure S16. Yield of hydrosilylation reaction using [Rh(\mu-Cl)(cod)]_2 as catalyst in [P_{4441}][MeSO_4] and [P_{4441}][NTf_2] and [P_{4441}][N$

GC chromatograms

Figure S17. GC chromatograms of post reaction mixture obtained from A batch reaction using $[P_{8888}][NTf_2]$ as solvent for Wilkinson catalyst, B- reaction in microreactor using $[P_{8888}][NTf_2]$ as solvent for catalyst; retention times 1.5-2.0 min – substrates (1-octene, HMTS), 6.4 min – decane (internal standard), 11.7 min – product (octylohepthamethyltrisiloxane)

GC/MS/MS chromatograms

Figure S18. GC-MS chromatogram of octylohepthamethyltrisiloxane obtained from batch reaction using [P₈₈₈₈][NTf₂] as solvent for catalyst; 1- TIC chromatogram, 2- 319M/z chromatogram

Figure 519. MS spectra of octylhepthamethyltrisiloxane (product) at the retention time 11.38 min obtained from batch reaction using [P₈₈₈₈][NTf₂] as solvent for catalyst

Chemical Formula: C₁₄H₃₅O₂Si₃• Chemical Formula: C₇H₂₁O₂Si₃• Exact Mass: 319,19 Exact Mass: 221,08

Chemical Formula: $C_6H_{19}O_2Si_3$ Chemical Formula: $C_5H_{15}O_2Si_3$ Exact Mass: 207,07 Exact Mass: 191,04

Chemical Formula: C₄H₁₃OSi₂ Chemical Formula: C₃H₉Si Exact Mass: 133,05

Exact Mass: 73,05

Figure S20. Proposed fragmentation of MS spectra of octylhepthamethyltrisiloxane as observed for the peak from GC-MS measurements at the retention time 11.38 min

TGA analysis of Ionic Liquids

Table S1. TGA analysis of ILs at the temperature of 110 $^{\rm o}\text{C}$, over the period of 10 h

Ionic Liquid	Loss of weight of ionic liquid [%]
[P ₈₈₈₈][NTf ₂]	0.25
[P ₄₄₄₁₄][NTf ₂]	0.17
[P ₄₄₄₁][NTf ₂])	0.40
[P ₄₄₄₁][MeSO ₄]	0.21

ICP analysis

In order to determine the content of platinum catalyst in the reaction products, the inductively coupled plasma (ICP) technique was used. Unfortunately, the initial concentration of the used catalyst $(1 \times 10^{-4} \text{ mole of Pt/Rh})$ in the ionic liquid) was close to the limit of detection of used instrument. For samples from the reaction mixture containing the product, the concentration of platinum/rhodium was below the limit of detection and thus we could not confirm quantitatively the amount of platinum/rhodium catalyst presence in the product.

IC chromatograms

Figure S21. IC chromatograms of synthesized ionic liquids with [NTf2]- anion from their chloride precursors. No peak observance at ~4.9 min means that [CI]⁻ content in ionic liquid is below limit of detection.