Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Ruthenium-arene complexes with NSAIDs: Synthesis, characterization and bioactivity

Ana Tadić,^a Jelena Poljarević,^a Milena Krstić,^b Marijana Kajzerberger,^c Sandra Aranđelović,^c Siniša Radulović,^c Chrisoula Kakoulidou,^d Athanasios N. Papadopoulos,^e George Psomas,^d Sanja Grgurić-Šipka^a

^a Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia

^b Faculty of Veterinary Medicine, University of Belgrade, Bulevar oslobodjenja 18, 11000 Belgrade, Serbia

^c Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia

^d Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, P.O. Box 135, GR-54124 Thessaloniki, Greece.

^e Department of Nutrition and Dietetics, Faculty of Food Technology and Nutrition, Alexandrion Technological Educational Institution, Sindos, Thessaloniki, Greece.

Supplementary material

S1. NMR spectra of synthesized complexes

Figure S1. Parallel ¹H NMR spectra of ligand1 and complex 1

Figure S2. Parallel ¹³C NMR spectra of ligand 1 and complex 1

Figure S4. Parallel ¹³C NMR spectra of ligand 2 and complex 2

Figure S5. Parallel ¹H NMR spectra of ligand1 and complex 3

Figure S6. Parallel ¹³C NMR spectra of ligand 1 and complex 3

Figure S7. Parallel ¹H NMR spectra of ligand 2 and complex 4

Figure S8. Parallel ¹³C NMR spectra of ligand 2 and complex 4

S2. MTT assay

Compound	K562	A549	MDA-MB-231	MRC-5	*SI _{K562}	*SI A549	*SI _{MDA-MB-231}
1	11.9±4.4	45.5±2.7	22±3.6	39.6±3.7	3.33	0.87	1.80
2	96.4±2	145.1±6.4	153±1.2	222.6±23.9	2.31	1.53	1.45
3	13.2±6.2	31.7±1.15	26±1.7	42±1.3	3.18	1.32	1.62
4	133±7	142.4±9.3	$121.4{\pm}1.8$	275.7±14.5	2.07	1.94	2.27
Hindo	155.9±11.4	161.5±13.9	244.7±17.8	230.5±17.8	1.48	1.43	0.94
Hmef	143.9±4.1	217.3±46.7	237.9±18.8	>300	>2.08	>1.38	>1.26
CDDP	10.3±1.2	13.6±1.8	15.9±2.1	9.3±0.9	0.90	0.68	0.58

Table 1. IC₅₀ [µM] values obtained after 72 h of continuous drug action.

* IC₅₀ [μ M] values are presented as the mean \pm SEM of three independent experiments. > 300 denotes that IC₅₀ was not obtained in the range of concentrations tested up to 300 μ M.

*SI-selectivity index for tested complexes, ligands and cisplatin, in tumor cell lines (K562, A549 and MDA-MB-231), related to non-tumor MRC-5 cell line: SI_{K562} (IC₅₀ MRC-5/IC₅₀ K562), SI_{A549} (IC₅₀ MRC-5/IC₅₀ A549), $SI_{MDA-MB-231}$ (IC₅₀ MRC-5/IC₅₀ MDA-MB-231). SI values for tested complexes and ligands were obviously higher than for cisplatin, particularly in MDA-MB-231 and K562.

S3. Interaction with biomolecules

S3-1. Interaction with serum albumins

The extent of the inner-filter effect can be roughly estimated with the following formula:

$$I_{corr} = I_{meas} \times 10^{\frac{\epsilon(\lambda_{exc})cd}{2}} \times 10^{\frac{\epsilon(\lambda_{em})cd}{2}}$$
(eq. S1)

where I_{corr} = corrected intensity, I_{meas} = the measured intensity, c = the concentration of the quencher, d = the cuvette (1 cm), $\epsilon(\lambda_{exc})$ and $\epsilon(\lambda_{em})$ = the ϵ of the quencher at the excitation and the emission wavelength, respectively, as calculated from the UV-vis spectra of the complexes.¹

The Stern-Volmer and Scatchard graphs are used in order to study the interaction of a quencher with serum albumins. According to Stern-Volmer quenching equation: ²

$$\frac{Io}{I} = 1 + k_{q} \tau_{0}[Q] = 1 + K_{SV}[Q]$$
(eq. S2)

where Io = the initial tryptophan fluorescence intensity of SA, I = the tryptophan fluorescence intensity of SA after the addition of the quencher (i.e. complexes **1-4**), k_q = the quenching constant, K_{SV} = the Stern-Volmer constant, τ_o = the average lifetime of SA without the quencher, [Q] = the concentration of the quencher) K_{SV} (in M⁻¹) can be obtained by the slope of the diagram Io/I versus [Q], and subsequently the quenching constant (k_q , in M⁻¹s⁻¹) is calculated from eq. S3, with τ_o = 10⁻⁸ s as fluorescence lifetime of tryptophan in SA,

$$K_{SV} = k_q \tau_o$$
 (eq. S3)

From the Scatchard equation:³

$$\frac{\Delta I}{[Q]} = nK - K\frac{\Delta I}{Io}$$
 (eq. S4)

where n is the number of binding sites per albumin and K is the SA-binding constant, K (in M⁻¹) is calculated from the slope in plots ($\Delta I/Io$)/[Q] versus $\Delta I/Io$ and n is given by the ratio of y intercept to the slope.³

S3-2. Interaction with CT DNA

The DNA-binding constant (K_b, in M⁻¹) can be obtained by monitoring the changes in the absorbance at the corresponding λ_{max} with increasing concentrations of CT DNA and it is given by the ratio of slope to the y intercept in plots [DNA]/(ϵ_A - ϵ_f) versus [DNA], according to the Wolfe-Shimer equation:⁴

$$\frac{[\text{DNA}]}{(\varepsilon_{\text{A}} - \varepsilon_{\text{f}})} = \frac{[\text{DNA}]}{(\varepsilon_{\text{b}} - \varepsilon_{\text{f}})} + \frac{1}{K_{\text{b}}(\varepsilon_{\text{b}} - \varepsilon_{\text{f}})}$$
(eq. S5)

where [DNA] is the concentration of DNA in base pairs, $\varepsilon_A = A_{obsd}/[compound]$, ε_f = the extinction coefficient for the free compound and ε_b = the extinction coefficient for the compound in the fully bound form.

S3-3. Competitive studies with EB

The Stern-Volmer constant (K_{SV}, in M⁻¹) is used to evaluate the quenching efficiency for each compound according to the Stern-Volmer equation (eq. S2),² where Io and I are the emission intensities of the EB-DNA solution in the absence and the presence of the quencher, respectively, [Q] is the concentration of the quencher (i.e. complexes **1-4**), τ_0 = the average lifetime of the emitting system without the quencher and k_q = the quenching constant. K_{SV} may be obtained from the Stern-Volmer plots by the slope of the diagram Io/I versus [Q]. Taking τ_0 = 23 ns as the fluorescence lifetime of the EB-DNA system,⁵ the quenching constants (k_q, in M⁻¹s⁻¹) of the compounds can be determined according to eq. (S3).

References

1 L. Stella, A.L. Capodilupo and M. Bietti, *Chem. Commun.*, 2008, 4744.

2 J.R. Lakowicz, *Principles of Fluorescence Spectroscopy*, third ed., Plenum Press, New York, 2006.

3 Y. Wang, H. Zhang, G. Zhang, W. Tao and S. Tang, J. Luminescence, 2007, 126, 211.

4 A. Wolfe, G. Shimer and T. Meehan, *Biochemistry*, 1987, **26**, 6392.

5 D.P. Heller and C.L. Greenstock, *Biophys. Chem.*, 1994, **50**, 305.

Table S2. 7	The BSA a	and HSA	binding	constants and	parameters	(K _{sv} , 1	Ka, K	, n) fo	or complexes	1-4.
-------------	-----------	---------	---------	---------------	------------	----------------------	-------	---------	--------------	------

Compound	Ksv (M ⁻¹)	$k_{q} (M^{-1}s^{-1})$	K (M ⁻¹)	n
BSA				
$K[Ru(\eta^6-p-cymene)(indo)Cl_2], 1$	$1.25(\pm 0.05) \times 10^5$	$1.25(\pm 0.05) \times 10^{13}$	$4.49(\pm 0.30) \times 10^5$	0.68
$(NH_4)[Ru(\eta^6-p-cymene)(mef)Cl_2], 2$	$1.70(\pm 0.08) \times 10^{5}$	$1.70(\pm 0.08) \times 10^{13}$	$3.63(\pm 0.15) \times 10^5$	0.86
K[Ru(η^6 - <i>p</i> -toluene)(indo)Cl ₂], 3	$4.85(\pm 0.11) \times 10^4$	$4.85(\pm 0.11) \times 10^{12}$	$5.30(\pm 0.18) \times 10^4$	0.96
$(NH_4)[Ru(\eta^6-p-toluene)(mef)Cl_2], 4$	$1.30(\pm 0.04) \times 10^5$	1.30(±0.04)×10 ¹³	$2.63(\pm 0.10) \times 10^5$	0.84
HSA				
K[Ru(η^6 - <i>p</i> -cymene)(indo)Cl ₂], 1	$6.10(\pm 0.29) \times 10^4$	$6.10(\pm 0.29) \times 10^{12}$	$2.15(\pm 0.08) \times 10^5$	0.57
$(NH_4)[Ru(\eta^6-p-cymene)(mef)Cl_2], 2$	$5.46(\pm 0.19) \times 10^4$	$5.46(\pm 0.19) \times 10^{12}$	9.79(±0.34)×10 ⁴	0.78
K[Ru(η^6 - <i>p</i> -toluene)(indo)Cl ₂], 3	$2.04(\pm 0.13) \times 10^4$	$2.04(\pm 0.13) \times 10^{12}$	$9.44(\pm 0.40) \times 10^4$	0.31
$(NH_4)[Ru(\eta^6-p-toluene)(mef)Cl_2], 4$	4.32(±0.29)×104	4.32(±0.29)×1012	$4.24(\pm 0.12) \times 10^{5}$	0.37

Figure S9. Stern-Volmer quenching plot of HSA for complexes (A)-(D) 1-4, respectively.

Figure S10. Stern-Volmer quenching plot of BSA for complexes (A)-(D) 1-4, respectively.

Figure S11. Scatchard plot of HSA for complexes (A)-(D) 1-4, respectively.

Figure S12. Scatchard plot of BSA for complexes (A)-(D) 1-4, respectively.

Figure S13. Plot of $[DNA]/(\epsilon_A - \epsilon_f)$ vs [DNA] for complexes (A)-(D) 1-4, respectively.

Figure S14. Stern-Volmer quenching plot of EB-DNA fluorescence for complexes (A)-(D) **1-4**, respectively.