Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Electronic Supplementary Information (ESI) for:

Synthesis, Structural, Photophysical, Electrochemical Redox and Axial Ligation Properties of Highly Electron Deficient

Perchlorometalloporphyrins and Selective CN⁻ Sensing by Co(II) Complexes

Nivedita Chaudhri^a, Ray J. Butcher^b and Muniappan Sankar^{a*}

^oDepartment of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, India ^bDepartment of Chemistry, Howard University, Washington, DC 20059, USA

Contents Page N					
Fig. S1	The ORTEP diagrams showing top views of (a) CoTPP(NO ₂)Cl ₇ .MeOH (1a .MeOH), (b) ZnTPP(NO ₂)Cl ₇ .Py (1d .Py) and (C) NiTPPCl ₈ (2b).				
Fig. S2	The packing diagram of (a) $ZnTPP(NO_2)Cl_7$.MeOH (1d .MeOH) and (b) $ZnTPPCl_8$.MeOH (2b .MeOH).	3			
Fig. S3	Displacement of porphyrin core atoms (in Angstroms) from the mean plane for CoTPP(NO ₂)Cl ₇ .MeOH(1a .MeOH) (a), ZnTPP(NO ₂)Cl ₇ .Py (1d .Py) and NiTPPCl ₈ (2b) (c), respectively.				
Table S1.	Crystal structure data of CoTPP(NO ₂)Cl ₇ , NiTPPCl ₈ , ZnTPP(NO ₂)Cl ₇ , and ZnTPPCl ₈ .				
Table S2.	Selected average bond lengths and bond angles of CoTPP(NO ₂)Cl ₈ .MeOH (1a).MeOH, NiTPPCl ₈ (2b), ZnTPP(NO ₂)Cl ₇ .MeOH, ZnTPP(NO ₂)Cl ₇ .Py, and ZnTPPCl ₈ (2d).				
Figs. S4 and S5	The ¹ H NMR spectrum of Ni(II) complexes of synthesized compounds in $CDCI_3$ at 298 K.	7			
Figs. S6-S9	The ESI-MS spectra of (2a)- (2d) in CH_3CN at 298 K.				
Fig. S10	Electronic absorption spectra of (a) 1a and 2a , (b) 1b and 2b , and (c) 1c and 2c in toluene at 298K				
Fig. S11	Comparative Cyclic voltammograms of (a) 1b and 2b , (b) 1c and 2c in CH_2Cl_2 under argon at room temperature.	11			
Fig. S12	Axial ligation of pyridine to 2d in toluene at 298K.	11			
Figs. S13 and S14	The axial ligation studies of 1d and 2d with X^- (where $X = CN^-$, OAc ⁻ , F ⁻ and PO ₄ -) in toluene at 298K.	12-13			
Figs. S15	Constructed Benesi-Hildebrand plots for 1d and 2d with cyanide ion in 1:1 stoichiometric ration	14			

Fig. S16	The colorimetric changes of 2a with tested anions (Top) and UV-visible spectral changes upon addition of excess of anions in the form of their TBA salts in toluene at 298 K (Bottom).	14
Fig. S17	The UV-Visible spectral titration of 2a upon sequential addition of cyanide ion in toluene at 298 K. Insight shows a plot between $[CN^{-}]^{2}$ and $[CN^{-}]^{2}/\Delta A$.	15
Fig. S18	DPV (in V vs Ag/ AgCl) traces recorded for 2a and 2a .CN ⁻ in CH_2Cl_2 at 298 K.	15
Fig. S19	DPV titrations of 1a and 2a while increasing the concentration of CN^- ion in CH_2Cl_2 containing 0.1 M TBAPF ₆ at 298K.	16
Fig. S20	The ratiometric absorbance changes (A_{483}/A_{440}) of 2 a (1.01 × 10 ⁻⁵ M) on addition of 1-2eq. of CN ⁻ and 10 eq. of other anions.	16
Fig. S21	Reversible studies of 2a using 1mM solution of TFA in toluene at 298K.	17
Fig. S22	Fully optimized geometries of (a) top and side views of $ZnTPP(NO_2)Cl_7$ (1d), (b) top and side views of $ZnTPPCl_8$ (2d).	17
Fig. S23	Fully optimized geometries of (a, and c) top and side views of CoTPPCl ₈ (2a), (b and d) top and side views of CoTPPCl ₈ CN^- (2a CN^-).	18
Fig. S24- S26	Frontier molecular orbitals of 1d and 2d, 1a and 2a; and 1a.CN ⁻ and 2a.CN ⁻ .	18-19
Fig. S27	Theoretical UV-Visible spectra of (a) 1a and (b) 2a obtained by TD-DFT calculations in gas phase.	20
Fig. S28, S29	Experimental and theoretical UV-Vis. spectra of 1a .CN ⁻ and 2a .CN ⁻ obtained from TD-DFT.	21

Figure S1. The ORTEP diagrams showing top views of (a) CoTPP(NO₂)Cl₇.MeOH (**1a**.MeOH), (b) ZnTPP(NO₂)Cl₇.Py (**1d**.py) and (C) NiTPPCl₈ (**2b**).

Figure S2. The packing diagram of (a) ZnTPP(NO₂)Cl₇.MeOH (**1d**.MeOH) and (b) ZnTPPCl₈.MeOH (**2b**.MeOH).

Figure S3. Displacement of porphyrin core atoms (in Angstroms) from the mean plane for $CoTPP(NO_2)Cl_7$.MeOH(**1a**.MeOH) (a), ZnTPP(NO_2)Cl_7.Py (**1d**.Py) and NiTPPCl₈ (2b) (c), respectively.

	CoTPP(NO ₂)Cl ₇	NiTPPCI ₈	ZnTPP(NO ₂)Cl ₇ .Pv	ZnTPP(NO ₂)Cl ₇ . MeOH	ZnTPPCl ₈ .MeOH
Empirical	C ₄₆ H ₂₈ Cl ₇ N ₅ O ₄ Co	C ₄₄ H ₂₀ Cl ₈ N ₄ Ni	C ₄₉ H ₂₅ Cl ₇ N ₆ O ₂ Zn	C ₄₆ H ₂₈ Cl ₇ .5N ₄	C ₄₆ H ₂₈ Cl ₈ N ₄ O ₂ Zn
formula				.5O₃Zn	
Formula wt.	1021.81	946.95	1043.27	1022.97	1017.69
Crystal system	Monoclinic	Monoclinic	monoclinic	triclinic	monoclinic
Space group	P 21/n	P 21/n	P 21/c	P -1	P 21/n
a (Å)	16.157(2)	14.4657(7)	22.161(7)	10.4998(7)	15.706(3)
b (Å)	13.9906(17)	27.0627(14)	14.459(4)	14.4853(9)	14.352(3)
<i>c</i> (Å)	20.088(3)	10.7356(6)	29.775(9)	15.9272(11)	19.961(4)
α (º)	90.00	90.00	90.000(5)	110.246(6)	90°
β (º)	110.01(6)	111.244(3)	105.085(12)	97.020(6)	107.639°(11)
γ (º)	90.00	90.00	90.000(5)	103.619(5)	90°
Volume (Å ³)	4266.8(10)	3917.2(4)	9212(5)	2153.0(3)	4288.2(15)
Z	4	4	8	2	4
Dcald (mg/m ³)	1.591	1.606	1.504	1.578	1.576
λ (Å)	0.71073	0.71073	0.71073	0.71073	0.71073
Т (К)	100(2)	100(2)	100(2)	100(2)	296(2)
No. of total reflns.	52971	27312	71991	10605	61532
No. of indepnt. reflns.	8341	6843	16976	10605	11675
R	0.0538	0.0939	0.0484	0.1121	0.0444
Rw	0.0932	0.1355	0.1054	0.2957	0.1040
GOOF	1.017	1.024	1.026	1.142	1.016
CCDC	1585103	1585104	1585105	1585106	1585107

Table S1. Crystal structure data of CoTPP(NO₂)Cl₇, NiTPPCl₈, ZnTPP(NO₂)Cl₇, and ZnTPPCl₈

Figure S4. ¹H NMR spectrum of NiTPPNO₂Cl₇ (**2a**) in CDCl₃ at 298 K.

Figure S5. ¹H NMR spectrum of NiTPPCl₈ (**2b**) in CDCl₃ at 298 K.

Figure S6. The ESI-MS spectra of $CoTPP(NO_2)CI_7$ (2a) in CH_3CN at 298 K.

Figure S7. The ESI-MS spectra of NiTPP(NO₂)Cl₇ (2b) in CH₃CN at 298 K.

Figure S8. The ESI-MS spectra of CuTPP(NO₂)Cl₇ (2c) in CH₃CN at 298 K.

Figure S9. The ESI-MS spectra of $ZnTPP(NO_2)CI_7(2d)$ in CH_3CN at 298 K.

Figure S10. Electronic absorption spectra of (a) 1a and 2a, (b) 1b and 2b, and (c) 1c and 2c in toluene at 298K

Figure S11. Comparative Cyclic voltammograms of (a) **1b** and **2b**, (b) **1c** and **2c** in CH_2Cl_2 under argon at room temperature with 0.1M TBAF₆ as the supporting electrolyte at a scan rate of 100 mV/s.

Figure S12. Axial ligation of pyridine to 2d in toluene at 298K.

Figure S13. The axial ligation studies of X⁻, Where X = OAc⁻ (a), F⁻ (b), and PO₄⁻ (c) anions to **1d** (8.29×10⁻⁶ M) in toluene at 298K. Main plots show the spectral changes in Soret region and insets show plot $[X^{-}]^2$ VS $[X^{-}]^2/\Delta A$.

Figure S14. The axial ligation studies of X⁻ Where X = OAc⁻ (a), CN⁻ (b), F⁻ (c) and PO₄⁻ (d) anions to **2d** (8.38×10⁻⁶ M) in toluene at 298K. Main plots show the spectral changes in Soret region and insets show plot $[X^-]^2$ VS $[X^-]^2/\Delta A$.

Figure S15. Benesi-Hildebrand plot constructed for 1:1 stoichiometric ratio from the titration data of **1d** and **2d** with cyanide ion. Cyanide binding is not accurately modeled by this plot indicating that binding cannot be of 1:1 stoichiometry.

Figure S16. The colorimetric changes of **2a** with tested anions in toluene at 298K (Top). The UVvisible spectral changes of **2a** upon addition of excess of anions in the form of their TBA salts in toluene at 298 K (Bottom).

Figure S17. The UV-Visible spectral titration of **2a** (1.05×10^{-5} M) upon sequential addition of cyanide ion in toluene at 298 K. Insight shows BH plot between $1/\Delta A$ and $1/[CN^-]$.

Figure S18. DPV (in V vs Ag/ AgCl) traces recorded for **2a** and **2a**.CN⁻ in CH₂Cl₂ containing 0.1M TBAPF₆ with a scan rate of 0.1 Vs⁻¹ at 298 K.

Figure S19. DPV titrations of **1a** and **2a** while increasing the concentration of CN^{-} ion in CH_2CI_2 containing 0.1 M TBAPF₆ at 298K.

Figure S20. The ratiometric absorbance changes (A_{483}/A_{440}) of **2**a $(1.05 \times 10^{-5} \text{ M})$ on addition of 2 eq. of CN⁻ and 10 eq. of other anions. Green bars indicate the blank and in presence of other interfering anions, and purple bars indicate the addition of CN⁻ to the interfering anions.

Figure S21. Reversible studies of 2a using 1mM solution of TFA in toluene at 298K.

Figure S22. Fully optimized geometries of (a) top and side views of $ZnTPP(NO_2)Cl_7$ (**1d**), (b) top and side views of $ZnTPPCl_8$ (**2d**). H atoms in top views and phenyl rings in side views are omitted for clarity.

Figure S23. Fully optimized geometries of (a and c) top and side views of CoTPPCl₈ (**2a**), (b and d) top and side views of CoTPPCl₈.CN⁻ (**2a**.CN⁻) .H atoms in top views and phenyl rings in side views are omitted for clarity.

Figure S24. The Pictorial representation of frontier molecular orbitals of (a) $ZnTPP(NO_2)CI_7$ (1d) and, (b) $ZnTPPCI_8$ (2d).

Figure S25. The Pictorial representation of frontier molecular orbitals of (a) CoTPP(NO₂)Cl₇ (**1a**) and, (b) CoTPPCl₈ (**2a**).

Figure S26. The Pictorial representation of frontier molecular orbitals of (a) $CoTPP(NO_2)CI_7$ (**1a**.CN⁻) and, (b) $CoTPPCI_8$ (**2a**.CN⁻).

Figure S27. Theoretical UV-Visible spectra of (a) 1a and (b) 2a obtained by TD-DFT calculations in gas phase.

Figure S28. The comparison between (a) experimental UV-Vis spectrum and (b) The theoretical UV-Vis. spectrum of $CoTPP(NO_2)Cl_7.CN^-$ (**1a.**CN⁻).

Figure S29. Experimental UV-Vis spectrum (a) and Theoretical UV-Vis. spectrum (b) of CoTPPCl₈.CN⁻ (**2a.**CN⁻).