Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Antiproliferative, antioxidant, computational and electrochemical studies of new azo-containing Schiff Base Ruthenium(II) complexes

Ayşe İnan^a, Mesut İkiz^a, Seçil Erden Tayhan^b, Sema Bilgin^c, Nusret Genç^c, Koray Sayın^d, Gökhan Ceyhan^e, Muhammet Köse^a, Ayşe Dağ^f, Esin İspir^a

^aDepartment of Chemistry, Faculty of Science and Arts, Kahramanmaraş Sütçü İmam University, Kahramanmaraş, 46050–9, Turkey

^bDepartment of Genetic and Bioengineering, Faculty of Natural Science and Engineering, Gaziosmanpaşa University, Tokat, 60240, Turkey

^cDepartment of Chemistry, Faculty of Science and Arts, Gaziosmanpaşa University, Tokat, 60240, Turkey

^dDepartment of Chemistry, Faculty of Science, Cumhuriyet University, Sivas, 58140 Turkey ^eResearch and Development Centre for University-Industry-Public Relations, Kahramanmaras, Sütçü İmam University, 46100, Kahramanmaras, Turkey ^f6th Regional Directorate of State Hydraulic Works, 46100 Turkey

Table of Contents:

Fig. S1. ¹H and ¹³C-NMR spectrum of 2

Fig. S2. ¹H and ¹³C-NMR spectrum of 3

Fig. S3. ¹H and ¹³C-NMR spectrum of 4

Fig. S4. ¹H and ¹³C-NMR spectrum of 5

Fig. S5. ¹H and ¹³C-NMR spectrum of 6

Fig. S6. ¹H and ¹³C-NMR spectrum of 7

Fig. S7. ¹H and ¹³C-NMR spectrum of 8

Fig. S8. ¹H and ¹³C-NMR spectrum of 9

Fig. S9. ¹H and ¹³C-NMR spectrum of 10

Fig. S10. ¹H and ¹³C-NMR spectrum of 11

Fig. S11. IR spectrum of ligands (2-6)

Fig. S12. IR spectrum of complexes (7-11)

Fig. S13. Calculated IR spectrum of mentioned ligands at same level of theory in gas phase.

Fig. S14. Calculated IR spectrum of mentioned complexes at same level of theory in gas phase.

Fig. S15 UV spectrum of ligands (2-6)

Fig. S16. UV spectrum of complexes (7-11)

Fig. S17 a) Fingerprint plots b) π - π stacking contacts in 2 c) CH····O (phenol) hydrogen bond type interactions in **6**.

Fig. S18 a) Fingerprint plot of 9 b) d_{norm} surface of 9 showing CH····Cl interactions.

Fig. S19. Percentage contributions of different intermolecular interactions in 2.

Fig. S20. Percentage contributions of different intermolecular interactions in 6.

Fig. S21. Percentage contributions of different intermolecular interactions in 10.

Fig. S22. Reversible reduction–oxidation processes of the new azo Schiff base ligands in DMF solution.

Table S1.Calculated chemical shift values of carbon atoms in related complexes.

Table S2. Calculated chemical shift values of hydrogen atoms in related complexes.

Table S3. Selected bond lengths [Å] and angles [°] for ligand 2-6

Table S4. Hydrogen bond parameters for 2 and 6 [Å and °].

Table S5. Bond lengths [Å] and angles [°] for 2.

Table S6. Torsion angles [°] for 2.Table S7. Bond lengths [Å] and angles [°] for 6.

 Table S8. Torsion angles [°] for 6.

Table S9. Bond lengths [Å] and angles $[\circ]$ for 10.

Table S10.Torsion angles [°] for 10.

Table S11. Hydrogen bonds for **10** [Å and °]

Fig. S1. ¹H and ¹³C-NMR spectrum of **2**

Fig. S3. ¹H and ¹³C-NMR spectrum of 4

Fig. S4. ¹H and ¹³C-NMR spectrum of **5**

Fig. S5. ¹H and ¹³C-NMR spectrum of 6

Fig. S6. 1 H and 13 C-NMR spectrum of 7

Fig. S7. ¹H and ¹³C-NMR spectrum of 8

Fig. S8. ¹H and ¹³C-NMR spectrum of 9

Fig. S9. ¹H and ¹³C-NMR spectrum of 10

Fig. S10. ¹H and ¹³C-NMR spectrum of 11

Fig. S11. IR spectrum of ligands (2-6)

Fig. S12. IR spectrum of complexes (7-11)

Fig. S13. Calculated IR spectrum of mentioned ligands at same level of theory in gas phase.

Fig. S14. Calculated IR spectrum of mentioned complexes at same level of theory in gas phase.

Fig. S15 UV spectrum of ligands (2-6)

Fig. S16. UV spectrum of complexes (7-11)

Fig. S17 a) Fingerprint plots b) π-π stacking contacts in 2
c) CH····O (phenol) hydrogen bond type interactions in 6.

Fig. S18 a) Fingerprint plot of 9 b) d_{norm} surface of 9 showing CH····Cl interactions

Fig. S19. Percentage contributions of different intermolecular interactions in 2.

Fig. S20. Percentage contributions of different intermolecular interactions in 6.

Fig. S21. Percentage contributions of different intermolecular interactions in 10.

Fig. S22. Reversible reduction–oxidation processes of the new azo Schiff base ligands in DMF solution.

Table S1.

Assignments	7	8	9	10	11
C1	19.08	19.23	18.91	19.47	18.58
C2	96.69	92.96	95.70	90.04	101.84
C3	102.63	105.41	103.42	104.34	96.91
C4	91.87	87.89	90.93	84.17	97.16
C5	121.36	124.98	121.05	129.65	115.27
C6	84.65	81.92	84.09	77.50	88.06
C7	90.46	93.99	89.90	100.92	89.08
C8	33.06	33.74	33.01	35.76	31.93
C9	25.64	25.64	25.55	26.84	25.38
C10	19.31	19.45	19.11	19.65	18.97
C11	159.08	158.89	161.29	158.85	161.36
C12	116.94	116.81	116.85	116.40	119.81
C13	166.89	166.78	166.98	166.93	168.59
C14	121.90	121.85	121.94	121.95	121.71
C15	116.57	116.55	116.46	116.66	116.36
C16	140.84	140.91	140.76	140.90	141.08
C17	139.19	139.18	139.45	139.33	138.61
C18	148.50	148.46	148.48	148.47	148.51
C19	128.41	128.40	128.31	128.40	128.45
C20	123.74	123.72	123.73	123.73	123.75
C21	125.20	125.23	124.96	125.28	125.11
C22	123.27	123.31	123.24	123.33	123.28
C23	107.91	107.95	107.94	107.97	107.94
C24	153.95	150.36	145.58	152.76	151.08
C25	117.76	119.08	148.21	110.63	129.00
C26	124.76	113.72	107.24	119.08	124.81
C27	133.44	154.96	122.87	145.68	132.95
C28	125.80	107.29	118.29	151.04	126.77
C29	124.27	125.72	126.48	110.11	132.56
C30	21.89	54.20	55.17	59.29	21.97
C31	-	-	-	55.04	20.53
C32	-	-	-	-	21.63

Calculated chemical shift values of carbon atoms in related complexes.

^aAtomic labellings are represented in Fig. 5.

Table S2.

011111	1 1 . 0	1 0	1 1		1 / 1	1
Calculated chemica	l chitt	values of	hydrogen	atoms in	n related	complexes
Culculated enternica	1 31111	values of	nyurugun	atoms n	i i ciatou	complexes.

				-	
Assignments	7	8	9	10	11
C1H'	2.62	2.39	2.59	1.99	1.59
C1H"	2.28	2.30	1.69	2.30	3.16
C1H'''	1.48	1.61	2.25	1.98	2.36
СЗН	5.61	5.60	5.58	5.43	5.46
C4H	5.61	5.46	5.52	5.33	5.59
C6H	3.63	3.63	3.55	4.08	3.76
C7H	4.82	4.90	5.26	4.77	4.56
C8H	3.90	3.95	3.88	3.66	3.73
С9Н'	1.50	1.58	1.57	1.23	1.35
С9Н"	1.55	1.59	1.53	1.47	1.11
С9Н'''	1.03	1.10	1.02	1.65	0.66
C10H'	1.19	1.84	1.10	2.67	1.48
C10H"	0.67	0.82	0.58	1.07	0.97
C10H'''	1.54	1.28	1.47	1.38	1.54
C11H	7.85	7.83	7.83	7.86	7.64
C14H	6.90	6.90	6.93	6.93	6.86
С15Н	7.90	7.90	7.92	7.91	7.86
С17Н	7.08	7.08	7.07	7.07	7.02
С19Н	7.83	7.84	7.82	7.84	7.80
С20Н	7.43	7.44	7.43	7.45	7.44
C21H	7.24	7.23	7.25	7.22	7.27
C22H	7.21	7.21	7.20	7.20	7.21
С23Н	7.77	7.78	7.76	7.77	7.75
С25Н	7.11	7.14	_	6.75	_
С26Н	7.15	7.00	6.68	7.02	6.98
С27Н	-	-	7.23	-	-
C28H	7.39	6.62	7.10	-	7.11
С29Н	8.49	8.62	8.53	7.93	_
C30H'	1.91	3.77	4.08	5.23	2.14
C30H"	2 62	3 76	4 32	3 43	2 25
C30H'''	2 62	4 20	3 80	4 02	2.61
C31H'	-	-	-	3 87	1 95
C31H"	-	_	-	3.97	2.31
C31H'''	-	-	-	4 21	2.80
C32H'	-	-	-	-	4 06
C32H"	-	-	-	-	1 86
C32H'''	-	-	-	-	2.27

^aAtomic labellings are represented in Fig. 5.

Assignments	2		3	4	5	6	
	Experimental	Calculated	Calculated	Calculated	Calculated	Experimental	Calculated
N(1)-N(2)	1.253(2)	1.280	1.281	1.280	1.280	1.259(3)	1.280
N(3)-C(13)	1.279(2)	1.305	1.305	1.305	1.305	1.286(3)	1.303
O(1)-C(10)	1.349(2)	1.356	1.356	1.360	1.356	1.341(3)	1.356
N(1)-C(6)	1.431(2)	1.424	1.424	1.424	1.424	1.425(3)	1.424
N(2)-C(7)	1.423(2)	1.416	1.416	1.417	1.416	1.428(3)	1.416
N(3)-C(14)	1.436(2)	1.417	1.415	1.419	1.416	1.417(3)	1.423
N(2)-N(1)-	113.82(16)					115.20(2)	
C(6)		115.74	115.73	115.80	115.70		115.70
N(1)-N(2)-	114.53(16)					113.23(19)	
C(7)		115.86	115.88	115.80	115.90		115.90
C(13)-N(3)-	118.73(16)					123.12(19)	
C(14)		123.33	123.65	121.30	123.50		

Selected bond lengths [Å] and angles [°] for ligand 2-6

Table S3.

Table S4.

Hydrogen bond parameters for $\mathbf{2}$ and $\mathbf{6}$ [Å and °].

	D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
2	O(1)-H(1A)N(3)	0.82	1.76	2.612(2)	146.0
6	O(1)-H(1A)N(3)	0.82	1.84	2.567(2)	147.4
	C(13)-H(13)O(1)*	0.93	2.63	3.517(3)	160.4

Symmetrycode* x,-y+3/2,z+1/2

Table S5.

Bond lengths [Å] and angles [°] for **2**.

N(1)-N(2)	1.253(2)	C(11)-C(12)	1.393(2)
N(1)-C(6)	1.431(2)	C(11)-C(13)	1.453(2)
O(1)-C(10)	1.349(2)	C(12)-H(12)	0.9300
O(1)-H(1A)	0.96(3)	C(13)-H(13)	0.9300
C(1)-C(6)	1.383(3)	C(14)-C(19)	1.393(3)
C(1)-C(2)	1.386(3)	C(14)-C(15)	1.395(3)
C(1)-H(1)	0.9300	C(15)-C(16)	1.396(3)
N(2)-C(7)	1.423(2)	C(15)-C(20)	1.507(3)
C(2)-C(3)	1.370(4)	C(16)-C(17)	1.375(3)
C(2)-H(2)	0.9300	C(16)-H(16)	0.9300
N(3)-C(13)	1.279(2)	C(17)-C(18)	1.377(3)
N(3)-C(14)	1.436(2)	C(17)-C(21)	1.518(3)
C(3)-C(4)	1.379(3)	C(18)-C(19)	1.391(3)
C(3)-H(3)	0.9300	C(18)-H(18)	0.9300
C(4)-C(5)	1.379(3)	C(19)-C(22)	1.503(3)
C(4)-H(4)	0.9300	C(20)-H(20A)	0.9600
C(5)-C(6)	1.388(3)	C(20)-H(20B)	0.9600
C(5)-H(5)	0.9300	C(20)-H(20C)	0.9600
C(7)-C(12)	1.381(2)	C(21)-H(21A)	0.9600
C(7)-C(8)	1.401(3)	C(21)-H(21B)	0.9600
C(8)-C(9)	1.370(3)	C(21)-H(21C)	0.9600
C(8)-H(8)	0.9300	C(22)-H(22A)	0.9600
C(9)-C(10)	1.393(2)	C(22)-H(22B)	0.9600
C(9)-H(9)	0.9300	C(22)-H(22C)	0.9600
C(10)-C(11)	1.409(3)		
N(2)-N(1)-C(6)	113.82(16)	C(3)-C(2)-H(2)	119.6
C(10)-O(1)-H(1A)	108.6(17)	C(1)-C(2)-H(2)	119.6
C(6)-C(1)-C(2)	119.1(2)	C(13)-N(3)-C(14)	118.73(16)
C(6)-C(1)-H(1)	120.4	C(2)-C(3)-C(4)	119.8(2)
C(2)-C(1)-H(1)	120.4	C(2)-C(3)-H(3)	120.1
N(1)-N(2)-C(7)	114.53(16)	C(4)-C(3)-H(3)	120.1
C(3)-C(2)-C(1)	120.9(2)	C(3)-C(4)-C(5)	120.3(2)

C(3)-C(4)-H(4)	119.9	C(14)-C(15)-C(20)	123.06(19)
C(5)-C(4)-H(4)	119.9	C(16)-C(15)-C(20)	119.1(2)
C(4)-C(5)-C(6)	119.68(19)	C(17)-C(16)-C(15)	122.2(2)
C(4)-C(5)-H(5)	120.2	C(17)-C(16)-H(16)	118.9
C(6)-C(5)-H(5)	120.2	C(15)-C(16)-H(16)	118.9
C(1)-C(6)-C(5)	120.23(18)	C(16)-C(17)-C(18)	118.34(19)
C(1)-C(6)-N(1)	115.59(18)	C(16)-C(17)-C(21)	121.1(2)
C(5)-C(6)-N(1)	124.17(16)	C(18)-C(17)-C(21)	120.6(2)
C(12)-C(7)-C(8)	119.48(16)	C(17)-C(18)-C(19)	122.2(2)
C(12)-C(7)-N(2)	116.09(16)	C(17)-C(18)-H(18)	118.9
C(8)-C(7)-N(2)	124.43(15)	C(19)-C(18)-H(18)	118.9
C(9)-C(8)-C(7)	120.63(16)	C(18)-C(19)-C(14)	118.1(2)
C(9)-C(8)-H(8)	119.7	C(18)-C(19)-C(22)	120.7(2)
C(7)-C(8)-H(8)	119.7	C(14)-C(19)-C(22)	121.15(18)
C(8)-C(9)-C(10)	120.02(17)	C(15)-C(20)-H(20A)	109.5
C(8)-C(9)-H(9)	120.0	C(15)-C(20)-H(20B)	109.5
C(10)-C(9)-H(9)	120.0	H(20A)-C(20)-H(20B)	109.5
O(1)-C(10)-C(9)	118.55(17)	C(15)-C(20)-H(20C)	109.5
O(1)-C(10)-C(11)	121.25(16)	H(20A)-C(20)-H(20C)	109.5
C(9)-C(10)-C(11)	120.20(16)	H(20B)-C(20)-H(20C)	109.5
C(12)-C(11)-C(10)	118.66(15)	C(17)-C(21)-H(21A)	109.5
C(12)-C(11)-C(13)	119.70(16)	C(17)-C(21)-H(21B)	109.5
C(10)-C(11)-C(13)	121.63(16)	H(21A)-C(21)-H(21B)	109.5
C(7)-C(12)-C(11)	120.98(17)	C(17)-C(21)-H(21C)	109.5
C(7)-C(12)-H(12)	119.5	H(21A)-C(21)-H(21C)	109.5
С(11)-С(12)-Н(12)	119.5	H(21B)-C(21)-H(21C)	109.5
N(3)-C(13)-C(11)	122.02(18)	C(19)-C(22)-H(22A)	109.5
N(3)-C(13)-H(13)	119.0	C(19)-C(22)-H(22B)	109.5
С(11)-С(13)-Н(13)	119.0	H(22A)-C(22)-H(22B)	109.5
C(19)-C(14)-C(15)	121.26(17)	C(19)-C(22)-H(22C)	109.5
C(19)-C(14)-N(3)	117.72(18)	H(22A)-C(22)-H(22C)	109.5
C(15)-C(14)-N(3)	120.97(18)	H(22B)-C(22)-H(22C)	109.5
C(14)-C(15)-C(16)	117.8(2)		

Table S6.

Torsion angles [°] for **2**.

C(6)-N(1)-N(2)-C(7)	179.33(15)
C(6)-C(1)-C(2)-C(3)	-0.3(3)
C(1)-C(2)-C(3)-C(4)	0.3(4)
C(2)-C(3)-C(4)-C(5)	-0.2(4)
C(3)-C(4)-C(5)-C(6)	0.2(3)
C(2)-C(1)-C(6)-C(5)	0.3(3)
C(2)-C(1)-C(6)-N(1)	-179.24(18)
C(4)-C(5)-C(6)-C(1)	-0.2(3)
C(4)-C(5)-C(6)-N(1)	179.28(19)
N(2)-N(1)-C(6)-C(1)	177.55(17)
N(2)-N(1)-C(6)-C(5)	-1.9(3)
N(1)-N(2)-C(7)-C(12)	177.20(16)
N(1)-N(2)-C(7)-C(8)	-2.9(3)
C(12)-C(7)-C(8)-C(9)	-0.5(3)
N(2)-C(7)-C(8)-C(9)	179.55(18)
C(7)-C(8)-C(9)-C(10)	0.6(3)
C(8)-C(9)-C(10)-O(1)	179.04(18)
C(8)-C(9)-C(10)-C(11)	-1.0(3)
O(1)-C(10)-C(11)-C(12)	-178.71(17)
C(9)-C(10)-C(11)-C(12)	1.3(3)
O(1)-C(10)-C(11)-C(13)	1.5(3)
C(9)-C(10)-C(11)-C(13)	-178.45(17)
C(8)-C(7)-C(12)-C(11)	0.9(3)
N(2)-C(7)-C(12)-C(11)	-179.19(16)
C(10)-C(11)-C(12)-C(7)	-1.3(3)
C(13)-C(11)-C(12)-C(7)	178.48(17)
C(14)-N(3)-C(13)-C(11)	179.14(17)
C(12)-C(11)-C(13)-N(3)	-178.29(17)
C(10)-C(11)-C(13)-N(3)	1.5(3)
C(13)-N(3)-C(14)-C(19)	111.7(2)
C(13)-N(3)-C(14)-C(15)	-70.6(2)
C(19)-C(14)-C(15)-C(16)	-2.4(3)
N(3)-C(14)-C(15)-C(16)	-179.96(18)
C(19)-C(14)-C(15)-C(20)	175.9(2)
N(3)-C(14)-C(15)-C(20)	-1.7(3)

_

C(14)-C(15)-C(16)-C(17)	0.1(3)
C(20)-C(15)-C(16)-C(17)	-178.2(2)
C(15)-C(16)-C(17)-C(18)	1.6(4)
C(15)-C(16)-C(17)-C(21)	-178.1(2)
C(16)-C(17)-C(18)-C(19)	-1.1(3)
C(21)-C(17)-C(18)-C(19)	178.5(2)
C(17)-C(18)-C(19)-C(14)	-1.1(3)
C(17)-C(18)-C(19)-C(22)	-179.9(2)
C(15)-C(14)-C(19)-C(18)	2.9(3)
N(3)-C(14)-C(19)-C(18)	-179.51(18)
C(15)-C(14)-C(19)-C(22)	-178.3(2)
N(3)-C(14)-C(19)-C(22)	-0.7(3)

Table S7.

O(1)-C(10)	1.341(3)	C(9)-C(10)	1.389(3)
O(1)-H(1A)	0.8200	C(9)-H(9)	0.9300
N(1)-N(2)	1.259(3)	C(10)-C(11)	1.411(3)
N(1)-C(6)	1.425(3)	C(11)-C(12)	1.393(3)
C(1)-C(6)	1.383(3)	C(11)-C(13)	1.445(3)
C(1)-C(2)	1.384(4)	C(12)-H(12)	0.9300
C(1)-H(1)	0.9300	C(13)-H(13)	0.9300
N(2)-C(7)	1.428(3)	C(14)-C(19)	1.382(3)
C(2)-C(3)	1.370(4)	C(14)-C(15)	1.385(3)
C(2)-H(2)	0.9300	C(15)-C(16)	1.384(3)
N(3)-C(13)	1.286(3)	C(15)-H(15)	0.9300
N(3)-C(14)	1.417(3)	C(16)-C(17)	1.384(3)
C(3)-C(4)	1.377(4)	C(16)-H(16)	0.9300
C(3)-H(3)	0.9300	C(17)-C(18)	1.380(3)
C(4)-C(5)	1.383(3)	C(17)-C(20)	1.505(3)
C(4)-H(4)	0.9300	C(18)-C(19)	1.381(3)
C(5)-C(6)	1.380(3)	C(18)-H(18)	0.9300
C(5)-H(5)	0.9300	C(19)-H(19)	0.9300
C(7)-C(12)	1.382(3)	C(20)-H(20A)	0.9600
C(7)-C(8)	1.398(3)	C(20)-H(20B)	0.9600
C(8)-C(9)	1.371(3)	C(20)-H(20C)	0.9600
C(8)-H(8)	0.9300		
C(10)-O(1)-H(1A)	109 5	C(2)-C(3)-H(3)	120.0
N(2)-N(1)-C(6)	115 2(2)	C(4)-C(3)-H(3)	120.0
C(6)-C(1)-C(2)	120.5(3)	C(3)-C(4)-C(5)	120.6(3)
C(6)-C(1)-H(1)	119.8	C(3)-C(4)-H(4)	119.7
C(2)-C(1)-H(1)	119.8	C(5)-C(4)-H(4)	119.7
N(1)-N(2)-C(7)	113.23(19)	C(6)-C(5)-C(4)	119.6(2)
C(3)-C(2)-C(1)	119.8(3)	C(6)-C(5)-H(5)	120.2
C(3)-C(2)-H(2)	120.1	C(4)-C(5)-H(5)	120.2
C(1)-C(2)-H(2)	120.1	C(5)-C(6)-C(1)	119.5(2)
C(13)-N(3)-C(14)	123.12(19)	C(5)-C(6)-N(1)	125.5(2)
C(2)-C(3)-C(4)	120.0(3)	C(1)-C(6)-N(1)	115.0(2)

Bond lengths [Å] and angles [°] for 6.

C(12)-C(7)-C(8)	118.7(2)	C(15)-C(14)-N(3)	125.5(2)
C(12)-C(7)-N(2)	117.5(2)	C(16)-C(15)-C(14)	120.5(2)
C(8)-C(7)-N(2)	123.7(2)	C(16)-C(15)-H(15)	119.7
C(9)-C(8)-C(7)	120.6(2)	C(14)-C(15)-H(15)	119.7
C(9)-C(8)-H(8)	119.7	C(15)-C(16)-C(17)	121.8(2)
C(7)-C(8)-H(8)	119.7	C(15)-C(16)-H(16)	119.1
C(8)-C(9)-C(10)	120.7(2)	C(17)-C(16)-H(16)	119.1
C(8)-C(9)-H(9)	119.7	C(18)-C(17)-C(16)	117.3(2)
C(10)-C(9)-H(9)	119.7	C(18)-C(17)-C(20)	121.7(2)
O(1)-C(10)-C(9)	118.4(2)	C(16)-C(17)-C(20)	121.0(2)
O(1)-C(10)-C(11)	121.7(2)	C(17)-C(18)-C(19)	121.1(2)
C(9)-C(10)-C(11)	119.9(2)	C(17)-C(18)-H(18)	119.4
C(12)-C(11)-C(10)	118.10(19)	C(19)-C(18)-H(18)	119.4
C(12)-C(11)-C(13)	121.18(19)	C(18)-C(19)-C(14)	121.6(2)
C(10)-C(11)-C(13)	120.72(19)	C(18)-C(19)-H(19)	119.2
C(7)-C(12)-C(11)	122.0(2)	C(14)-C(19)-H(19)	119.2
C(7)-C(12)-H(12)	119.0	C(17)-C(20)-H(20A)	109.5
С(11)-С(12)-Н(12)	119.0	C(17)-C(20)-H(20B)	109.5
N(3)-C(13)-C(11)	121.2(2)	H(20A)-C(20)-H(20B)	109.5
N(3)-C(13)-H(13)	119.4	С(17)-С(20)-Н(20С)	109.5
С(11)-С(13)-Н(13)	119.4	H(20A)-C(20)-H(20C)	109.5
C(19)-C(14)-C(15)	117.6(2)	H(20B)-C(20)-H(20C)	109.5
C(19)-C(14)-N(3)	116.84(19)		

Table S8.

Torsion angles [°] for **6**.

C(6)-N(1)-N(2)-C(7)	-177.78(17)
C(6)-C(1)-C(2)-C(3)	0.9(4)
C(1)-C(2)-C(3)-C(4)	0.1(4)
C(2)-C(3)-C(4)-C(5)	-0.8(4)
C(3)-C(4)-C(5)-C(6)	0.7(4)
C(4)-C(5)-C(6)-C(1)	0.2(4)
C(4)-C(5)-C(6)-N(1)	178.4(2)
C(2)-C(1)-C(6)-C(5)	-1.0(4)
C(2)-C(1)-C(6)-N(1)	-179.4(2)
N(2)-N(1)-C(6)-C(5)	2.7(3)
N(2)-N(1)-C(6)-C(1)	-179.1(2)
N(1)-N(2)-C(7)-C(12)	-173.74(19)
N(1)-N(2)-C(7)-C(8)	8.3(3)
C(12)-C(7)-C(8)-C(9)	-0.7(3)
N(2)-C(7)-C(8)-C(9)	177.2(2)
C(7)-C(8)-C(9)-C(10)	-0.1(4)
C(8)-C(9)-C(10)-O(1)	-178.3(2)
C(8)-C(9)-C(10)-C(11)	0.9(3)
O(1)-C(10)-C(11)-C(12)	178.3(2)
C(9)-C(10)-C(11)-C(12)	-0.9(3)
O(1)-C(10)-C(11)-C(13)	-1.6(3)
C(9)-C(10)-C(11)-C(13)	179.3(2)
C(8)-C(7)-C(12)-C(11)	0.7(3)
N(2)-C(7)-C(12)-C(11)	-177.39(18)
C(10)-C(11)-C(12)-C(7)	0.1(3)
C(13)-C(11)-C(12)-C(7)	179.95(19)
C(14)-N(3)-C(13)-C(11)	-179.25(18)
C(12)-C(11)-C(13)-N(3)	-179.82(19)
C(10)-C(11)-C(13)-N(3)	0.0(3)
C(13)-N(3)-C(14)-C(19)	-171.4(2)
C(13)-N(3)-C(14)-C(15)	10.6(3)
C(19)-C(14)-C(15)-C(16)	1.7(3)
N(3)-C(14)-C(15)-C(16)	179.8(2)
C(14)-C(15)-C(16)-C(17)	0.0(3)
C(15)-C(16)-C(17)-C(18)	-1.3(3)

_

C(15)-C(16)-C(17)-C(20)	179.1(2)
C(16)-C(17)-C(18)-C(19)	1.0(3)
C(20)-C(17)-C(18)-C(19)	-179.5(2)
C(17)-C(18)-C(19)-C(14)	0.8(4)
C(15)-C(14)-C(19)-C(18)	-2.1(3)
N(3)-C(14)-C(19)-C(18)	179.7(2)

Table S9.

Ru(1)-O(1)	Lu(1)-O(1) 2.0594(14) C		0.9300
Ru(1)-N(3)	Ru(1)-N(3) 2.0948(17)		1.385(3)
Ru(1)-C(25)	2.165(2)	C(4)-H(4)	0.9300
Ru(1)-C(26)	2.171(2)	C(5)-C(6)	1.388(3)
Ru(1)-C(22)	2.182(2)	C(5)-H(5)	0.9300
Ru(1)-C(24)	2.183(2)	C(7)-C(12)	1.378(3)
Ru(1)-C(23)	2.184(2)	C(7)-C(8)	1.410(3)
Ru(1)-C(21)	2.214(2)	C(8)-C(9)	1.365(3)
Ru(1)-Cl(1)	2.4264(6)	C(8)-H(8)	0.9300
N(3)-C(13)	1.292(3)	C(9)-C(10)	1.425(3)
N(3)-C(14)	1.438(2)	C(9)-H(9)	0.9300
O(1)-C(10)	1.296(2)	C(10)-C(11)	1.423(3)
C(21)-C(26)	1.406(3)	C(11)-C(12)	1.406(3)
C(21)-C(22)	1.420(4)	C(11)-C(13)	1.430(3)
C(21)-C(27)	1.501(4)	С(12)-Н(12)	0.9300
C(22)-C(23)	1.397(3)	C(13)-H(13)	0.9300
C(22)-H(22)	0.9300	C(14)-C(15)	1.376(3)
C(23)-C(24)	1.425(3)	C(14)-C(19)	1.393(3)
C(23)-H(23)	0.9300	C(15)-C(16)	1.387(4)
C(24)-C(25)	1.407(3)	C(15)-H(15)	0.9300
C(24)-C(28)	1.510(3)	C(16)-C(17)	1.357(5)
C(25)-C(26)	1.421(3)	C(16)-H(16)	0.9300
C(25)-H(25)	0.9300	C(17)-C(18)	1.369(5)
C(26)-H(26)	0.9300	C(17)-H(17)	0.9300
C(1)-C(6)	1.382(3)	C(18)-C(19)	1.401(4)
C(1)-C(2)	1.390(3)	C(18)-H(18)	0.9300
C(1)-H(1)	0.9300	C(20)-H(20A)	0.9600
N(1)-N(2)	1.252(3)	C(20)-H(20B)	0.9600
N(1)-C(6)	1.431(3)	C(20)-H(20C)	0.9600
O(2)-C(19)	1.364(3)	C(27)-H(27A)	0.9600
O(2)-C(20)	1.418(4)	C(27)-H(27B)	0.9600
C(2)-C(3)	1.364(4)	C(27)-H(27C)	0.9600
C(2)-H(2)	0.9300	C(28)-C(29)	1.512(5)
N(2)-C(7)	1.415(3)	C(28)-C(30)	1.531(4)
C(3)-C(4)	1.378(4)	C(28)-H(28)	0.9800

Bond lengths [Å] and angles $[\circ]$ for 9.

C(29)-H(29A)	0.9600	C(30)-H(31A)	0.9600
C(29)-H(29B)	0.9600	C(30)-H(31B)	0.9600
C(29)-H(29C)	0.9600	C(30)-H(31C)	0.9600
O(1)-Ru(1)-N(3)	87.61(6)	C(23)-Ru(1)-Cl(1)	113.78(6)
O(1)-Ru(1)-C(25)	114.82(8)	C(21)- $Ru(1)$ - $Cl(1)$	91.66(6)
N(3)-Ru(1)-C(25)	95.99(8)	C(13)-N(3)-C(14)	116.16(17)
O(1)-Ru(1)-C(26)	153.07(8)	C(13)-N(3)-Ru(1)	126.27(13)
N(3)-Ru(1)-C(26)	93.71(8)	C(14)-N(3)-Ru(1)	117.55(13)
C(25)-Ru(1)-C(26)	38.27(9)	C(10)-O(1)-Ru(1)	129.20(13)
O(1)-Ru(1)-C(22)	117.52(8)	C(26)-C(21)-C(22)	117.3(2)
N(3)-Ru(1)-C(22)	153.92(8)	C(26)-C(21)-C(27)	121.3(3)
C(25)-Ru(1)-C(22)	80.26(9)	C(22)-C(21)-C(27)	121.4(3)
C(26)-Ru(1)-C(22)	67.32(9)	C(26)-C(21)-Ru(1)	69.64(12)
O(1)-Ru(1)-C(24)	87.96(7)	C(22)-C(21)-Ru(1)	69.96(12)
N(3)-Ru(1)-C(24)	122.73(8)	C(27)-C(21)-Ru(1)	128.98(17)
C(25)-Ru(1)-C(24)	37.77(9)	C(23)-C(22)-C(21)	121.6(2)
C(26)-Ru(1)-C(24)	68.74(9)	C(23)-C(22)-Ru(1)	71.42(12)
C(22)-Ru(1)-C(24)	68.48(9)	C(21)-C(22)-Ru(1)	72.36(12)
O(1)-Ru(1)-C(23)	90.07(7)	C(23)-C(22)-H(22)	119.2
N(3)-Ru(1)-C(23)	160.78(8)	C(21)-C(22)-H(22)	119.2
C(25)-Ru(1)-C(23)	67.78(9)	Ru(1)-C(22)-H(22)	129.6
C(26)-Ru(1)-C(23)	79.92(9)	C(22)-C(23)-C(24)	121.0(2)
C(22)-Ru(1)-C(23)	37.32(9)	C(22)-C(23)-Ru(1)	71.26(13)
C(24)-Ru(1)-C(23)	38.08(9)	C(24)-C(23)-Ru(1)	70.91(12)
O(1)-Ru(1)-C(21)	155.19(8)	C(22)-C(23)-H(23)	119.5
N(3)-Ru(1)-C(21)	116.94(8)	C(24)-C(23)-H(23)	119.5
C(25)-Ru(1)-C(21)	68.62(9)	Ru(1)-C(23)-H(23)	131.2
C(26)-Ru(1)-C(21)	37.40(9)	C(25)-C(24)-C(23)	117.8(2)
C(22)-Ru(1)-C(21)	37.67(9)	C(25)-C(24)-C(28)	123.1(2)
C(24)-Ru(1)-C(21)	81.70(8)	C(23)-C(24)-C(28)	119.1(2)
C(23)-Ru(1)-C(21)	67.99(9)	C(25)-C(24)-Ru(1)	70.44(12)
O(1)-Ru(1)-Cl(1)	86.67(4)	C(23)-C(24)-Ru(1)	71.01(12)
N(3)-Ru(1)-Cl(1)	85.14(5)	C(28)-C(24)-Ru(1)	127.85(16)
C(25)-Ru(1)-Cl(1)	158.50(7)	C(24)-C(25)-C(26)	120.6(2)
C(26)-Ru(1)-Cl(1)	120.25(7)	C(24)-C(25)-Ru(1)	71.79(12)
C(22)-Ru(1)-Cl(1)	89.30(6)	C(26)-C(25)-Ru(1)	71.07(12)
C(24)-Ru(1)-Cl(1)	151.35(6)	C(24)-C(25)-H(25)	119.7

C(26)-C(25)-H(25)	119.7	O(1)-C(10)-C(11)	124.85(17)
Ru(1)-C(25)-H(25)	130.0	O(1)-C(10)-C(9)	117.77(17)
C(21)-C(26)-C(25)	121.6(2)	C(11)-C(10)-C(9)	117.38(17)
C(21)-C(26)-Ru(1)	72.95(12)	C(12)-C(11)-C(10)	119.29(18)
C(25)-C(26)-Ru(1)	70.66(12)	C(12)-C(11)-C(13)	116.98(18)
C(21)-C(26)-H(26)	119.2	C(10)-C(11)-C(13)	123.67(17)
C(25)-C(26)-H(26)	119.2	C(7)-C(12)-C(11)	121.96(19)
Ru(1)-C(26)-H(26)	129.8	C(7)-C(12)-H(12)	119.0
C(6)-C(1)-C(2)	120.0(3)	C(11)-C(12)-H(12)	119.0
C(6)-C(1)-H(1)	120.0	N(3)-C(13)-C(11)	127.24(18)
C(2)-C(1)-H(1)	120.0	N(3)-C(13)-H(13)	116.4
N(2)-N(1)-C(6)	113.53(18)	С(11)-С(13)-Н(13)	116.4
C(19)-O(2)-C(20)	118.3(3)	C(15)-C(14)-C(19)	120.6(2)
C(3)-C(2)-C(1)	120.2(3)	C(15)-C(14)-N(3)	119.4(2)
C(3)-C(2)-H(2)	119.9	C(19)-C(14)-N(3)	119.9(2)
C(1)-C(2)-H(2)	119.9	C(14)-C(15)-C(16)	119.8(3)
N(1)-N(2)-C(7)	115.19(18)	C(14)-C(15)-H(15)	120.1
C(2)-C(3)-C(4)	120.1(2)	C(16)-C(15)-H(15)	120.1
C(2)-C(3)-H(3)	119.9	C(17)-C(16)-C(15)	119.8(3)
C(4)-C(3)-H(3)	119.9	C(17)-C(16)-H(16)	120.1
C(3)-C(4)-C(5)	120.5(3)	C(15)-C(16)-H(16)	120.1
C(3)-C(4)-H(4)	119.7	C(16)-C(17)-C(18)	121.4(3)
C(5)-C(4)-H(4)	119.7	C(16)-C(17)-H(17)	119.3
C(4)-C(5)-C(6)	119.4(2)	C(18)-C(17)-H(17)	119.3
C(4)-C(5)-H(5)	120.3	C(17)-C(18)-C(19)	120.0(3)
C(6)-C(5)-H(5)	120.3	C(17)-C(18)-H(18)	120.0
C(1)-C(6)-C(5)	119.8(2)	C(19)-C(18)-H(18)	120.0
C(1)-C(6)-N(1)	116.3(2)	O(2)-C(19)-C(14)	115.7(2)
C(5)-C(6)-N(1)	123.8(2)	O(2)-C(19)-C(18)	125.8(3)
C(12)-C(7)-C(8)	118.91(18)	C(14)-C(19)-C(18)	118.4(3)
C(12)-C(7)-N(2)	115.55(19)	O(2)-C(20)-H(20A)	109.5
C(8)-C(7)-N(2)	125.53(19)	O(2)-C(20)-H(20B)	109.5
C(9)-C(8)-C(7)	120.41(19)	H(20A)-C(20)-H(20B)	109.5
C(9)-C(8)-H(8)	119.8	O(2)-C(20)-H(20C)	109.5
C(7)-C(8)-H(8)	119.8	H(20A)-C(20)-H(20C)	109.5
C(8)-C(9)-C(10)	121.96(19)	H(20B)-C(20)-H(20C)	109.5
C(8)-C(9)-H(9)	119.0	C(21)-C(27)-H(27A)	109.5
C(10)-C(9)-H(9)	119.0	C(21)-C(27)-H(27B)	109.5

$\mathbf{U}(\mathbf{A}\mathbf{Z}\mathbf{A}) = \mathbf{C}(\mathbf{A}\mathbf{Z}) \mathbf{U}(\mathbf{A}\mathbf{Z}\mathbf{D})$	100 5
H(2/A)-C(2/)-H(2/B)	109.5
C(21)-C(27)-H(27C)	109.5
H(27A)-C(27)-H(27C)	109.5
H(27B)-C(27)-H(27C)	109.5
C(24)-C(28)-C(29)	113.9(3)
C(24)-C(28)-C(30)	109.3(2)
C(29)-C(28)-C(30)	111.6(3)
C(24)-C(28)-H(28)	107.2
C(29)-C(28)-H(28)	107.2
C(30)-C(28)-H(28)	107.2
C(28)-C(29)-H(29A)	109.5
C(28)-C(29)-H(29B)	109.5
H(29A)-C(29)-H(29B)	109.5
C(28)-C(29)-H(29C)	109.5
H(29A)-C(29)-H(29C)	109.5
H(29B)-C(29)-H(29C)	109.5
C(28)-C(30)-H(31A)	109.5
C(28)-C(30)-H(31B)	109.5
H(31A)-C(30)-H(31B)	109.5
C(28)-C(30)-H(31C)	109.5
H(31A)-C(30)-H(31C)	109.5
H(31B)-C(30)-H(31C)	109.5

Table S10.

Torsion angles [°] for 9.

C(26)-C(21)-C(22)-C(23)	-1.1(3)
C(27)-C(21)-C(22)-C(23)	-178.1(2)
Ru(1)-C(21)-C(22)-C(23)	-53.95(18)
C(26)-C(21)-C(22)-Ru(1)	52.82(17)
C(27)-C(21)-C(22)-Ru(1)	-124.2(2)
C(21)-C(22)-C(23)-C(24)	1.7(3)
Ru(1)-C(22)-C(23)-C(24)	-52.63(18)
C(21)-C(22)-C(23)-Ru(1)	54.37(18)
C(22)-C(23)-C(24)-C(25)	-1.6(3)
Ru(1)-C(23)-C(24)-C(25)	-54.41(17)
C(22)-C(23)-C(24)-C(28)	176.2(2)
Ru(1)-C(23)-C(24)-C(28)	123.5(2)
C(22)-C(23)-C(24)-Ru(1)	52.79(18)
C(23)-C(24)-C(25)-C(26)	1.0(3)
C(28)-C(24)-C(25)-C(26)	-176.8(2)
Ru(1)-C(24)-C(25)-C(26)	-53.72(18)
C(23)-C(24)-C(25)-Ru(1)	54.69(17)
C(28)-C(24)-C(25)-Ru(1)	-123.1(2)
C(22)-C(21)-C(26)-C(25)	0.5(3)
C(27)-C(21)-C(26)-C(25)	177.5(2)
Ru(1)-C(21)-C(26)-C(25)	53.45(18)
C(22)-C(21)-C(26)-Ru(1)	-52.97(17)
C(27)-C(21)-C(26)-Ru(1)	124.0(2)
C(24)-C(25)-C(26)-C(21)	-0.4(3)
Ru(1)-C(25)-C(26)-C(21)	-54.49(19)
C(24)-C(25)-C(26)-Ru(1)	54.05(18)
C(6)-C(1)-C(2)-C(3)	0.9(4)
C(6)-N(1)-N(2)-C(7)	-177.95(18)
C(1)-C(2)-C(3)-C(4)	-0.1(4)
C(2)-C(3)-C(4)-C(5)	-0.3(4)
C(3)-C(4)-C(5)-C(6)	0.0(4)
C(2)-C(1)-C(6)-C(5)	-1.2(4)
C(2)-C(1)-C(6)-N(1)	-179.2(2)
C(4)-C(5)-C(6)-C(1)	0.8(4)
C(4)-C(5)-C(6)-N(1)	178.6(2)

_

N(2)-N(1)-C(6)-C(1)	-171.9(2)
N(2)-N(1)-C(6)-C(5)	10.2(3)
N(1)-N(2)-C(7)-C(12)	171.5(2)
N(1)-N(2)-C(7)-C(8)	-7.4(3)
C(12)-C(7)-C(8)-C(9)	-1.3(3)
N(2)-C(7)-C(8)-C(9)	177.5(2)
C(7)-C(8)-C(9)-C(10)	-1.4(3)
Ru(1)-O(1)-C(10)-C(11)	-7.2(3)
Ru(1)-O(1)-C(10)-C(9)	173.22(14)
C(8)-C(9)-C(10)-O(1)	-177.61(19)
C(8)-C(9)-C(10)-C(11)	2.7(3)
O(1)-C(10)-C(11)-C(12)	179.04(19)
C(9)-C(10)-C(11)-C(12)	-1.3(3)
O(1)-C(10)-C(11)-C(13)	-4.0(3)
C(9)-C(10)-C(11)-C(13)	175.58(19)
C(8)-C(7)-C(12)-C(11)	2.7(3)
N(2)-C(7)-C(12)-C(11)	-176.2(2)
C(10)-C(11)-C(12)-C(7)	-1.4(3)
C(13)-C(11)-C(12)-C(7)	-178.5(2)
C(14)-N(3)-C(13)-C(11)	-177.4(2)
Ru(1)-N(3)-C(13)-C(11)	1.0(3)
C(12)-C(11)-C(13)-N(3)	-175.8(2)
C(10)-C(11)-C(13)-N(3)	7.2(3)
C(13)-N(3)-C(14)-C(15)	-106.6(3)
Ru(1)-N(3)-C(14)-C(15)	74.9(2)
C(13)-N(3)-C(14)-C(19)	77.3(3)
Ru(1)-N(3)-C(14)-C(19)	-101.2(2)
C(19)-C(14)-C(15)-C(16)	1.1(4)
N(3)-C(14)-C(15)-C(16)	-174.9(3)
C(14)-C(15)-C(16)-C(17)	0.4(5)
C(15)-C(16)-C(17)-C(18)	-1.3(6)
C(16)-C(17)-C(18)-C(19)	0.8(6)
C(20)-O(2)-C(19)-C(14)	-172.2(3)
C(20)-O(2)-C(19)-C(18)	9.9(5)
C(15)-C(14)-C(19)-O(2)	-179.6(2)
N(3)-C(14)-C(19)-O(2)	-3.6(3)
C(15)-C(14)-C(19)-C(18)	-1.6(4)
N(3)-C(14)-C(19)-C(18)	174.4(2)

178.4(3)
0.6(5)
28.5(4)
-149.3(3)
-61.5(3)
-97.1(3)
85.2(3)
172.9(2)

Table S11.

Hydrogen bonds for 9 [Å and °]

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
C(8)-H(8)Cl(1)#1	0.93	2.96	3.654(2)	132.2
C(3)-H(3)Cl(1)#2	0.93	2.73	3.649(2)	171.3

Symmetry transformations used to generate equivalent atoms: #1 -x,-y+1,-z+1 #2 -x,-y+2,-z+1