Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Supplementary Information New Journal of Chemistry Stereospecific ligands and their complexes. XXIV. Synthesis and characterization of platinum(II) complexes with some alkyl esters of (*S*,*S*)-ethylenediamine-*N*,*N'*-di-(2,2'-di(4--hydroxy)-benzyl-acetic acid. Binding interactions with DNA and HSA and some biological properties of these ligands and their palladium(II) and platinum(II) complexes

Danijela Lj. Stojković^a, Verica V. Jevtić^{b*}, Gordana P. Radić^c, Maja B. Đukić^b, Ratomir M. Jelić^c, Milan M. Zarić^d, Marija V. Anđelković^d, Milena S. Mišić^e, Dejan D. Baskić^{f,g} and Srećko R. Trifunović^b

^aUniversity of Kragujevac, Faculty of Agronomy, Cara Dušana 34, 32000 Čačak, Republic of Serbia
^bUniversity of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovića 12, 34000 Kragujevac, Republic of Serbia
^cUniversity of Kragujevac, Serbia, Faculty of Medical Sciences, Department of Pharmacy, Svetozara Markovića 69, 34000 Kragujevac, Republic of Serbia
^dUniversity of Kragujevac, Faculty of Medical Sciences, Department of Biochemistry, Svetozara Markovića 69, 34000 Kragujevac, Republic of Serbia
^ePublic Health Institute Vranje, Republic of Serbia
^fPublic Health Institute Kragujevac, Republic of Serbia
^gUniversity of Kragujevac, Faculty of Medical Sciences, Centre for Molecular Medicine and Stem Cell Research, Svetozara Markovića 69, 34000 Kragujevac, Republic of Serbia

* Corresponding author: Dr. Verica V. Jevtić

Faculty of Science, University of Kragujevac

1

Radoja Domanovića 12, 34000 Kragujevac, Serbia Tel: +381(0)34300263 Fax: +381(0)34335040 e-mail: glodjovicv@yahoo.com

Figure S1. Electronic spectra of complexes **C1** in Tris-HCl buffer upon addition of CT-DNA. [Complex] = 4.1×10^{-5} mol/dm³, [DNA] = $0-1.7 \times 10^{-4}$ mol/dm³. Arrow shows the absorption intensities increase upon increasing DNA concentration. Insets: plots of [DNA]/(ε_a - ε_f) versus [DNA].

Figure S2. Electronic spectra of complexes **C2** in Tris-HCl buffer upon addition of CT-DNA. [Complex] = 4.1×10^{-5} mol/dm³, [DNA] = $0-1.7 \times 10^{-4}$ mol/dm³. Arrow shows the absorption intensities increase upon increasing DNA concentration. Insets: plots of [DNA]/(ε_a - ε_f) versus [DNA].

Figure S3. Electronic spectra of complexes **C3** in Tris-HCl buffer upon addition of CT-DNA. [Complex] = 4.1×10^{-5} mol/dm³, [DNA] = $0 \cdot 1.7 \times 10^{-4}$ mol/dm³. Arrow shows the absorption intensities increase upon increasing DNA concentration. Insets: plots of [DNA]/(ε_a - ε_f) versus [DNA].

Figure S4. Electronic spectra of complexes **C5** in Tris-HCl buffer upon addition of CT-DNA. [Complex] = 6.0×10^{-5} mol/dm³, [DNA] = $0-1.7 \times 10^{-4}$ mol/dm³. Arrow shows the absorption intensities increase upon increasing DNA concentration. Insets: plots of [DNA]/(ε_a - ε_f) versus [DNA].

Figure S5. Electronic spectra of complexes C6 in Tris-HCl buffer upon addition of CT-DNA. [Complex] = 6.0×10^{-5} mol/dm³, [DNA] = $0-1.7 \times 10^{-4}$ mol/dm³. Arrow shows the absorption intensities increase upon increasing DNA concentration. Insets: plots of [DNA]/(ε_a - ε_f) versus [DNA].

Figure S6. Electronic spectra of complexes **C7** in Tris-HCl buffer upon addition of CT-DNA. [Complex] = 6.0×10^{-5} mol/dm³, [DNA] = $0-1.7 \times 10^{-4}$ mol/dm³. Arrow shows the absorption intensities increase upon increasing DNA concentration. Insets: plots of [DNA]/(ε_a - ε_f) versus [DNA].

Figure S7. Emission spectra of the CT-DNA-EB system in Tris–HCl buffer upon the titration of the **C1** complex. [EB] = 1.2×10^{-5} mol dm⁻³, [DNA] = 1.8×10^{-5} mol dm⁻³, [Complex] = $0 - 1.4 \times 10^{-4}$ mol/dm³. Arrow shows the intensity change upon the increase of the complex concentration.

Figure S8. Emission spectra of the CT-DNA-EB system in Tris–HCl buffer upon the titration of the **C2** complex. [EB] = 1.2×10^{-5} mol/dm³, [DNA] = 1.8×10^{-5} mol/dm³, [Complex] = $0 - 1.4 \times 10^{-4}$ mol/dm³. Arrow shows the intensity change upon the increase of the complex concentration.

Figure S9. Emission spectra of the CT-DNA-EB system in Tris–HCl buffer upon the titration of the **C3** complex. [EB] = 1.2×10^{-5} mol/dm³, [DNA] = 1.8×10^{-5} mol/dm³, [Complex] = $0 - 1.4 \times 10^{-4}$ mol/dm³. Arrow shows the intensity change upon the increase of the complex concentration.

Figure S10. Emission spectra of the CT-DNA-EB system in Tris–HCl buffer upon the titration of the **C5** complex. [EB] = 1.2×10^{-5} mol/dm³, [DNA] = 1.8×10^{-5} mol/dm³, [Complex] = $0-1.4 \times 10^{-4}$ mol/dm³. Arrow shows the intensity change upon the increase of the complex concentration.

Figure S11. Emission spectra of the CT-DNA-EB system in Tris–HCl buffer upon the titration of the C6 complex. [EB] = 1.2×10^{-5} mol/dm³, [DNA] = 1.8×10^{-5} mol/dm³, [Complex] = $0-1.4 \times 10^{-4}$ mol/dm³. Arrow shows the intensity change upon the increase of the complex concentration.

Figure S12. Emission spectra of the CT-DNA-EB system in Tris–HCl buffer upon the titration of the **C7** complex. [EB] = 1.2×10^{-5} mol/dm³, [DNA] = 1.8×10^{-5} mol/dm³, [Complex] = $0-1.4 \times 10^{-4}$ mol/dm³. Arrow shows the intensity change upon the increase of the complex concentration.

Figure S13. Absorption spectra of HSA ($2 \times 10^{-6} \text{ mol/dm}^3$), with various amounts of the **C1** complex ($0-15 \times 10^{-6} \text{ mol/dm}^3$) at room temperature.

Figure S14. Absorption spectra of HSA ($2 \times 10^{-6} \text{ mol/dm}^3$), with various amounts of the **C2** complex ($0-15 \times 10^{-6} \text{ mol/dm}^3$) at room temperature.

Figure S15. Absorption spectra of HSA ($2 \times 10^{-6} \text{ mol/dm}^3$), with various amounts of the C3 complex ($0-15 \times 10^{-6} \text{ mol/dm}^3$) at room temperature.

Figure S16. Absorption spectra of HSA $(2 \times 10^{-6} \text{ mol/dm}^3)$, with various amounts of the **C5** complex $(0-15 \times 10^{-6} \text{ mol/dm}^3)$ at room temperature.

Figure S17. Absorption spectra of HSA (2 x 10^{-6} mol/dm³), with various amounts of the C6 complex (0-15×10⁻⁶ mol/dm³) at room temperature.

Figure S18. Absorption spectra of HSA ($2 \times 10^{-6} \text{ mol/dm}^3$), with various amounts of the **C7** complex ($0-15 \times 10^{-6} \text{ mol/dm}^3$) at room temperature.

Figure S19. Effect of C1 (A), C2 (B) or C3 (C) complex on the fluorescence spectrum of HSA at room temperature, $[HSA] = 2 \times 10^{-6} \text{ mol/dm}^3$, $[Complex] = 0.15 \times 10^{-6} \text{ mol/dm}^3$.

Figure S20. Effect of **C5** (A), **C6** (B) or **C7** (C) complex on the fluorescence spectrum of HSA at room temperature, $[HSA] = 2 \times 10^{-6} \text{ mol/dm}^3$, $[Complex] = 0.15 \times 10^{-6} \text{ mol/dm}^3$.

Figure S21. Plot of $\log(F_0 - F)/F$ versus $\log[\text{Complex}]$ for HSA in the presence of complexes C1 and C5.

Figure S22. Plot of log $(F_0 - F)/F$ versus log[Complex] for HSA in the presence of complexes C2 and C6.

Figure S23. Plot of log $(F_0 - F)/F$ versus log[Complex] for HSA in the presence of complexes C3 and C7.

Figure S24. ¹H NMR spectra of dichlorido-(*O*,*O*'-dibutyl-(*S*,*S*)-ethylenediamine-N,N'-di--(2,2'-di(4-hydroxy)-benzyl-acetate-platinum(II), [PtCl₂(dbu-*S*,*S*-eddtyr)] **C3**

Figure S25. ¹³C NMR spectra of dichlorido-(O, O'-dibutyl-(S, S)-ethylenediamine-N, N'-di--(2,2'-di(4-hydroxy)-benzyl-acetate-platinum(II), [PtCl₂(dbu-S, S-eddtyr)] **C3**