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Fig. S1 TGA curves of IID3HTBT and DPP3HTBT at a heating rate of 10 °C/min in N». After the first
decomposition at approximately 200 °C, the second decomposition peak at approximately 400 °C appeared
for both of the small molecules, which indicates the molecules are thermally stable after the t-Boc groups
are removed. In general, TGA revealed that the t-Boc groups in the two small molecules were removed at
200 °C, which allows the formation of H-bonds, increasing the crystallinity and improving the hole mobility

in the devices.
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Scheme S1 Chemical structures of ID3HTBT and DPP3HTBT after thermal decarboxylation
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Fig. S2 Solvent resistant properties of ID3HTHT drop-casted thin films before and after thermal treatment
in CHCIs;. After thermal annealing at 200 °C for 30 min, due to the strong intermolecular interactions of N-
H...0=C, the resulting annealed films were insoluble in most common solvents such as chloroform, DMSO,

dichloromethane.



Supplementary Information

S

@

Q

c

£

E

)

&

= —IID3HTBT

—NHIID3HTBT
3500 3000 2500 2000 1500
Wavenumber (cm™)

S

= -

Q

: V A
g C=0 amides '

U] i

c

g
= C=0 DPP core

—— DPP3HTBT
—— NHDPP3HTBT

3500 3000 2500 2000 1500
Wavenumber (cm™)

Fig. S3 FT-IR spectra of IID3HTBT and DPP3HTBT before and after thermal decarboxylation. The peak
attributable to the C=0 group of t-Boc at ~1700 cm™ disappeared after thermal treatment at 200 °C for 30
min. This proves that the t-Boc groups were removed completely. Moreover, new weak peaks from the

regenerated NH groups between 3200 and 3450 cm™ appeared related to the formation of hydrogen bonds
(N-H...O=C) after thermal decarboxylation.
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Table S1 Optical and electrochemical properties of ID3HTBT and DPP3HTBT.

Materials UV-vis Absorbance Cyclic
Voltammetry
Solution Film
A max A max A onset Egort Enomo ELumo
(nm) (nm) (nm) (ev) (ev) (ev)
IID3HTBT 601 698 800 1.55 -5.82 -3.91
NHIID3HTBT 549 736 1.68 -5.84 -3.88
DPP3HTBT 482 528 684 181 -5.84 -3.79
NHDPP3HTBT 520 679 1.82 -5.81 -3.81
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Fig. S4 Cyclic voltammograms of small molecules before and after thermal decarboxylation. a) Reduction
scan of IID3HTBT; b) oxidation scan of IID3HTBT,; c) reduction scan of DPP3HTBT; and d) oxidation
scan of DPP3HTBT. The oxidation and reduction potentials of all casted and annealed small molecules

thin films on ITO glass were investigated in 0.1 M solution of TBAPFs inacetonitrile.
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Fig. S5 a) HRTEM and b) FFT images of IID3HTBT. Scale bars are 10 nm in a) and 2 nmin b).
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Hole-only device

The charge transportation characteristics of the synthesized small molecules were evaluated in hole-only
devices. The structure of hole only devices were ITO/ PEDOT:PSS/ small molecules/ MoOs/ Ag. As an
example, Fig. S6 a) presents the current density—voltage (J-V) characteristics of the fabricated hole only

devices with an IID3HTBT layer without thermal annealing.
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Fig. S6 a) J-V characteristic of ID3HTBT without thermal annealing. b) J-V curve corrected by the built-

in potential.

However, the J-V characteristic of hole only device does not show its minimum current value at 0 V. While
our hole only device is using ITO and Ag as electrode for each side of the hole only device, asymmetry
electrode generated internal built-in fields inside the hole only device.>? Therefore, fitting process consisted
correction term “Vuirin”. The current level of hole only device will be minimized when the built-in potential
countervailed by external field. Therefore, we assumed Vpir-in Of 0.22 V from the Fig. S6 a). By
assuming Vuir-in of 0.22 V, the shape of the J-V curve shows proper ohmic contact at low voltage region
and space-charge-limited conduction (SCLC) characteristic at high voltage region (Fig. S6 b)). This chmic
characteristic shows that PEDOT:PSS and MoQOs; were proper hole injection layer for hole only devices.
Fig. S7 presents the J-V characteristics of the fabricated hole-only device with an NHIID3HTBT, DPP3HTBT,
and NHDPP3HTBT layer. Finally, the mobility extraction is done by calculate the measured data with the Mott—

Gurney law in the high-voltage region where current follow a quadratic dependence on V—Vpiiin**
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Fig. S7 J-V characteristic of NHIID3HTBT, DPP3HTBT, NHDPP3HTBT; a), ¢), d) are measured data and

b), d), ) are corrected data by built-in potential.

Table S2 Summary of HOD characterizations of IID3HBT and DPP3HTBT.

Hole Mobility (cm?/Vs)

As casted
IID3SHTBT 2.10x10°®
DPP3HTBT 4.90x10°

Annealed

6.20x10®

6.10x10°
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Fig. S8 'H and **C NMR spectrum of compound 2 in CDCls.
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Fig. S9 *H and **C NMR spectrum of compound 5 in CDCls.
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Fig. S10 'H and *C NMR spectrum of compound 8 in CDCls.
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Fig. S11 'H and *C NMR spectrum of IID3HTBT in CDCls.
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Fig. S12 *H and *C NMR spectrum of DPP3HTBT in CDCls.
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