Molecular ordering of $A(D-A'-D)_2$ -based organic semiconductors through hydrogen bonding after simple cleavage of tert-butyloxycarbonyl protecting groups⁺

Cuc Kim Trinh^{a‡}, Hong-Joon Lee^{a‡}, Jin-Woo Choi^a, Mohamed Shaker^{a,b}, Wonbin Kim^a and Jae-Suk Lee^{*a}

^a School of Materials Science & Engineering, Research Institute for Solar an Sustainable Energies (RISE), Heeger Center for Advanced Materials, Advanced Photonics Research Institute (APRI), Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea. E-mail: jslee@gist.ac.kr

^b Chemistry Department, Faculty of Science, Tanta University, Tanta 31527, Egypt

Fig. S1 TGA curves of IID3HTBT and DPP3HTBT at a heating rate of 10 °C/min in N₂. After the first decomposition at approximately 200 °C, the second decomposition peak at approximately 400 °C appeared for both of the small molecules, which indicates the molecules are thermally stable after the t-Boc groups are removed. In general, TGA revealed that the t-Boc groups in the two small molecules were removed at 200 °C, which allows the formation of H-bonds, increasing the crystallinity and improving the hole mobility in the devices.

Scheme S1 Chemical structures of IID3HTBT and DPP3HTBT after thermal decarboxylation

Fig. S2 Solvent resistant properties of IID3HTHT drop-casted thin films before and after thermal treatment in CHCl₃. After thermal annealing at 200 °C for 30 min, due to the strong intermolecular interactions of N-H...O=C, the resulting annealed films were insoluble in most common solvents such as chloroform, DMSO, dichloromethane.

Fig. S3 FT-IR spectra of IID3HTBT and DPP3HTBT before and after thermal decarboxylation. The peak attributable to the C=O group of t-Boc at ~1700 cm⁻¹ disappeared after thermal treatment at 200 °C for 30 min. This proves that the t-Boc groups were removed completely. Moreover, new weak peaks from the regenerated NH groups between 3200 and 3450 cm⁻¹ appeared related to the formation of hydrogen bonds (N-H...O=C) after thermal decarboxylation.

Materials		UV-vis Absorbance			Cyclic Voltammetry	
	Solution		Film			
	λ _{max} (nm)	λ _{max} (nm)	λ_{onset} (nm)	Eg ^{opt} (ev)	E _{HOMO} (ev)	E _{LUMO} (ev)
IID3HTBT	601	698	800	1.55	-5.82	-3.91
NHIID3HTBT		549	736	1.68	-5.84	-3.88
DPP3HTBT	482	528	684	1.81	-5.84	-3.79
NHDPP3HTBT		520	679	1.82	-5.81	-3.81

 Table S1 Optical and electrochemical properties of IID3HTBT and DPP3HTBT.

Fig. S4 Cyclic voltammograms of small molecules before and after thermal decarboxylation. a) Reduction scan of IID3HTBT; b) oxidation scan of IID3HTBT; c) reduction scan of DPP3HTBT; and d) oxidation scan of DPP3HTBT. The oxidation and reduction potentials of all casted and annealed small molecules thin films on ITO glass were investigated in 0.1 M solution of $TBAPF_6$ in acetonitrile.

Fig. S5 a) HRTEM and b) FFT images of IID3HTBT. Scale bars are 10 nm in a) and 2 nm⁻¹ in b).

Hole-only device

The charge transportation characteristics of the synthesized small molecules were evaluated in hole-only devices. The structure of hole only devices were ITO/ PEDOT:PSS/ small molecules/ MoO₃/ Ag. As an example, Fig. S6 a) presents the current density–voltage (J–V) characteristics of the fabricated hole only devices with an IID3HTBT layer without thermal annealing.

Fig. S6 a) J-V characteristic of IID3HTBT without thermal annealing. b) J-V curve corrected by the builtin potential.

However, the J-V characteristic of hole only device does not show its minimum current value at 0 V. While our hole only device is using ITO and Ag as electrode for each side of the hole only device, asymmetry electrode generated internal built-in fields inside the hole only device.^{1.2} Therefore, fitting process consisted correction term "V_{built-in}". The current level of hole only device will be minimized when the built-in potential countervailed by external field. Therefore, we assumed V_{built-in} of 0.22 V from the Fig. S6 a). By assuming V_{built-in} of 0.22 V, the shape of the J-V curve shows proper ohmic contact at low voltage region and space-charge-limited conduction (SCLC) characteristic at high voltage region (Fig. S6 b)). This ohmic characteristic shows that PEDOT:PSS and MoO₃ were proper hole injection layer for hole only devices. Fig. S7 presents the J–V characteristics of the fabricated hole-only device with an NHIID3HTBT, DPP3HTBT, and NHDPP3HTBT layer. Finally, the mobility extraction is done by calculate the measured data with the Mott– Gurney law in the high-voltage region where current follow a quadratic dependence on V–V_{built-in}^{3,4}

Fig. S7 J-V characteristic of NHIID3HTBT, DPP3HTBT, NHDPP3HTBT; a), c), d) are measured data and b), d), f) are corrected data by built-in potential.

Table S2 Summary of HOD characterizations of IID3HBT and DPP3HTBT.

	Hole Mobility (cm ² /Vs)			
	As casted	Annealed		
IID3HTBT	2.10x10 ⁻⁶	6.20x10 ⁻⁶		
DPP3HTBT	4.90x10 ⁻⁶	6.10x10 ⁻⁵		

Fig. S8 ¹H and ¹³C NMR spectrum of compound 2 in CDCl₃.

Fig. S9 ¹H and ¹³C NMR spectrum of compound 5 in CDCl₃.

Fig. S10 ¹H and ¹³C NMR spectrum of compound 8 in CDCl₃.

Fig. S11 ¹H and ¹³C NMR spectrum of IID3HTBT in CDCl₃.

Fig. S12 ¹H and ¹³C NMR spectrum of DPP3HTBT in CDCl₃.

References

- 1. A. Kahn, N. Koch and W. Gao, J. Polym. Sci., Part B: Polym. Phys., 2003, 41, 2529
- 2. J. Hwang, A. Wan and A. Kahn, Mater. Sci. Eng., R, 2009, 64, 1
- 3. M. Kiy, P. Losio, I. Biaggio, M. Koehler, A. Tapponnier and P. Gunter, Appl. Phys. Lett., 2002, 80, 1198
- 4. W. Chandra, L. K. Ang, K. L. Pey and C. M. Ng, Appl. Phys. Lett., 2007, 90, 153505