Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Electronic Supplementary Information

Construction of mixed corrole-phthalocyanine europium triple-decker complexes involving *meso*-substituted *trans*-A₂B-corrole

Guifen Lu,* Cheng He, Yuanyuan Fang, Liping Wang and Weihua Zhu

School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.

Scheme S1. Synthesis of europium triple decker complexes **1-3** with *meso*-substituted *trans*- A_2B -corrolato and phthalocyaninato ligands.

Fig. S1. MALDI-TOF mass spectrum of $Eu_2[Pc(OC_4H_9)_8]_2[Cor(p-HPh)_2(p-CH_3OPh)]$ **1**.

Fig. S2. MALDI-TOF mass spectrum of $Eu_2[Pc(OC_4H_9)_8]_2[Cor(p-HPh)_2(p-FPh)]$ **2**.

Fig. S3. MALDI-TOF mass spectrum of $Eu_2[Pc(OC_4H_9)_8]_2[Cor(p-HPh)_2(p-CIPh)]$ **3**.

Fig. S4. IR spectra of compounds **1-3** in the region 400-3100 cm⁻¹ with 2 cm⁻¹ resolution, showing the diagnostic IR marker bands at 1313 and 1380 cm⁻¹ for $[Pc(OC_4H_9)_8]^{2^-}$.

Fig. S5. Raman spectrum of $Eu_2[Pc(OC_4H_9)_8]_2[Cor(p-HPh)_2(p-CH_3OPh)]$ **1** with excitation at 633 nm.

Fig. S6. Raman spectrum of $Eu_2[Pc(OC_4H_9)_8]_2[Cor(p-HPh)_2(p-FPh)]$ **2** with excitation at 633 nm.

Fig. S7. Cyclic voltammogram of $Eu_2[Pc(OC_4H_9)_8]_2[Cor(p-HPh)_2(p-FPh)]$ **2** in CH_2Cl_2 containing 0.1 M TBAP.

Fig. S8. Cyclic voltammogram of $Eu_2[Pc(OC_4H_9)_8]_2[Cor(p-HPh)_2(p-ClPh)]$ **3** in CH_2Cl_2 containing 0.1 M TBAP.

cpd	R1	R ²	λ _{max} /nm (logε)					re f
1	Н	CH₃O	293 (5.04)	351 (5.17)	421 (4.69)	533 (4.36) ^a	686 (4.73)	tw
2	Н	F	293 (5.21)	352 (5.30)	421 (4.91)	531 (4.57) ^a	682 (4.80)	tw
3	Н	Cl	293 (5.21)	351 (5.32)	421 (4.90)	532 (4.54) ^a	680 (4.85)	tw
4	Н	NO_2	294 (5.28)	351 (5.36)	425 (4.97)	542 (4.66) ^a	674 (4.93)	1

Table S1. Electronic absorption data for $Eu_2[Pc(OC_4H_9)_8]_2[Cor(p-R^1Ph)_2(p-R^2Ph)]$ (**1-4**) in CH_2CI_2 .

^{*a*} Broad and weak band. tw = this work.

cpd	substituent			O band/nm ^a	E/eV ^b	ref
	R^1	R ²	Σσ		_,	
1	Н	CH₃O	-0.27	686	1.809	tw
2	Н	F	0.06	682	1.819	tw
3	Н	Cl	0.23	680	1.825	tw
4	Н	NO_2	0.78	674	1.841	1

Table S2. The main Q band and corresponding energy of the compounds $Eu_2[Pc(OC_4H_9)_8]_2[Cor(p-R^1Ph)_2(p-R^2Ph)]$ (**1-4**) in CH₂Cl₂.

 a The main Q band of the compounds $Eu_2[Pc(OC_4H_9)_8]_2[Cor(p-R^1Ph)_2(p-R^2Ph)]$ (1-4) in CH_2CI_2

^{*b*} Calculated from the main Q band of the compounds $Eu_2[Pc(OC_4H_9)_8]_2[Cor(p-R^1Ph)_2(p-R^2Ph)]$ (1-4) in CH₂Cl₂ according to $E = hc/\lambda$.

tw = this work.

1	2	2	accignment
1	2	3	assignment
683 m	683 m	683 m	macrocycle
			breathing
751 m	750 m	749 m	δ macrocycle
883 w	879 w	882 w	
968 w	969 w	969 w	
1048 s	1049 w	1048 w	δ C-H
1078 s	1078 w	1073 w	
1135 m	1135 w	1128 m	pyrrole breathing
	1179 w		
1204 m	1210 m	1200 m	δ C-H
1245 m	1244 m	1241 w	
1317 m	1323 m	1314 s	δ C-H
			v C _{α} -C _{β} (pyrrole)
1406 m	1408 w	1408 m	v C=N
1429 m	1425 w	1427 w	v C=N
1459 m	1457 w	1460 w	v C=N
1505 sh	1507 sh	1505 sh	v C _{β} -C _{β} (pyrrole)
			v C=N(aza)
1600 s	1602 s	1598 w	v benzene

Table S3. Characteristic Raman bands (cm⁻¹) for $Eu_2[Pc(OC_4H_9)_8]_2[Cor(p-HPh)_2(p-R^2Ph)]$ (R² = CH₃O, F or Cl) with excitation at 633 nm.

Reference

1 G. Lu, J. Li, X. Jiang, Z. Ou and K. M. Kadish, *Inorg. Chem.*, 2015, **54**, 9211-9222.