Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

New Journal of Chemistry

ELECTRONIC SUPPLEMENTARY INFORMATION

Versatile functionalization of trifluoromethyl based deep blue

thermally activated delayed fluorescence materials for organic light

emitting diodes

Xiao Liang,^a Hua-Bo Han,^b Zhi-Ping Yan^b, Liang Liu^b, Youxuan Zheng^{b,*}, Hong Meng^{a,*}, Wei Huang^a

^aInstitute of Advanced Materials (IAM), Nanjing Tech University, Nanjing, 210023, China ^bState Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China

	Table of contents	
1	General information	S2
2	Cartesian coordinates of DTF-PCZ, NTN-PCZ, TN3T-PCZ, TN4T-PCZ	S3-S7
3	Calculated photophysical properties of four compounds	S8
4	Cyclic voltammetry of DTF-PCZ, NTN-PCZ, TN3T-PCZ, TN4T-PCZ in positive and negative voltage	S8
5	TGA and DTA profiles of DTF-PCZ, NTN-PCZ, TN3T-PCZ, TN4T-PCZ	S9
6	Photoluminescence spectrum of DTF-PCZ , NTN-PCZ , TN3T-PCZ , TN4T- PCZ at 300 K and 77 K in toluene solution	S10-S11
7	Absolute quantum yield of DTF-PCZ, NTN-PCZ, TN3T-PCZ, TN4T-PCZ in toluene solution	S12-S13
8	Photoluminescence decay in nanosecond and microsecond scale of DTF-PCZ, NTN-PCZ, TN3T-PCZ, TN4T-PCZ in degassed toluene	S14
8	Luminance, current efficiency, power efficiency, external quantum efficiency and electroluminescence spectrum	S15
9	1 H NMR (400 MHz, CDCl ₃) and 13 C NMR (101 MHz, CDCl ₃) spectra of DTF-PCZ	S16
10	^1H NMR (400 MHz, CDCl ₃) and ^{13}C NMR (101 MHz, CDCl ₃) spectra of NTN-PCZ	S17
11	^1H NMR (400 MHz, CDCl ₃) and ^{13}C NMR (101 MHz, CDCl ₃) spectra of TN3T-PCZ	S18

12 ¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (101 MHz, CDCl₃) spectra of S19 TN3T-PCZ **General information**: All reactions were carried out in a dry atmosphere and with positive pressure of nitrogen. Most of the reagents and solvents were commercially available and used without further purification. ¹H, ¹³C NMR were carried out using Bruker AVANCE 400 MHz NMR spectrometers in CDCl₃ solutions at 298 K. UV-Vis spectra was obtained on a UV-3100. Fluorescence and phosphorescence spectra at 298 K and 77 K were recorded on a Hitachi F-4600 spectrophotometer in chromatographically pure toluene. The thermogravimetric analysis and differential scanning calorimetry analysis were recorded on PerkinElmer Pyris 1. The elemental analysis was recorded by Heraeus CHN-O-Rapid. Transient photoluminescence decay lifetime was performed on Horiba FL-3. Cyclic-voltammetry measurements were conducted on a MPI-A multifunctional electrochemical and chemiluminescent system (Xi'an Remex Analytical Instrument Ltd. Co., China) at room temperature, employing a polished Pt plate as the working electrode, platinum thread as the counter electrode and Ag/AgNO₃ (0.1 M) in CH₃CN as the reference electrode, and tetra-n-butylammonium perchlorate (0.1 M) as the supporting electrolyte, Fc⁺/Fc was used as the internal standard, with scan rate of 0.1 V/s. All final products were purified by sublimation before applied to device fabrication.

Cartesian coordinates:

DTF-PCZ (-1653.2783 a.u.)

Table S1: Car	tesian coc	ordinates	for	DTF-	PCZ
---------------	------------	-----------	-----	------	-----

Center	Atomic	F	Forces (Hartrees/B	ohr)
Number	Number	х	Y	Z
1	6	0.000757034	0.000628603	-0.000140137
2	6	-0.000572225	-0.000935321	-0.000493553
3	6	-0.009615546	0.011604343	0.008578248
4	6	0.001184895	0.000185828	-0.000060179
5	6	-0.000663169	-0.000689898	0.000066853
6	6	-0.001222991	0.001455998	0.001082244
7	6	0.008848523	-0.010680180	-0.007886245
8	6	0.000824648	-0.000520484	-0.001096332
9	6	0.000867060	0.000158564	-0.000840692
10	6	-0.000748436	0.000928818	0.000679173
11	6	0.000016472	-0.001250051	0.000061285
12	6	0.000678981	-0.001285023	-0.000246444
13	7	-0.001608398	0.001981273	0.001452230
14	6	0.005077735	0.000432456	-0.000115476
15	6	0.003173501	0.003352607	0.001983919
16	6	-0.004795219	-0.001398185	-0.000537308
17	6	-0.002211536	-0.003892603	-0.002449264
18	6	-0.002011317	-0.001168532	-0.000857885
19	6	-0.000082545	0.001582035	0.001102505
20	6	0.001800393	-0.000495785	-0.000328140
21	6	-0.001990771	-0.001283761	-0.001005350
22	6	0.002272440	0.000947737	0.000758377
23	6	-0.000151278	-0.001494908	-0.001144848
24	6	-0.001742031	0.000619730	0.000526128
25	6	0.002086451	0.001042130	0.000761625
26	6	-0.000191708	-0.002557422	-0.001658435
27	9	-0.000095407	-0.000353166	0.000533575
28	9	0.000394217	0.000595721	0.001272502
29	9	-0.000792269	0.001006208	-0.000286586
30	6	0.002878809	-0.000681825	-0.000768820
31	9	-0.000013012	0.000476133	-0.000444604
32	9	-0.001274295	0.000455210	-0.000454737
33	9	-0.000310226	0.000293502	0.001269816
34	1	-0.000264057	-0.000014503	0.000211164
35	1	0.000001263	0.000342142	0.000027144
36	1	0.000470209	-0.000566994	-0.000419654
37	1	0.000532911	-0.000152253	-0.000366292

38	1	-0.000027583	-0.000809955	0.000030163
39	1	0.000606167	0.000125677	-0.000544138
40	1	0.000110662	-0.000628634	-0.000206423
41	1	-0.000335348	0.000543003	0.000387508
42	1	-0.000650334	-0.000327117	-0.000142423
43	1	-0.000619856	0.000062054	0.000125531
44	1	-0.000399855	0.000470517	0.000388305
45	1	-0.000407399	0.000503476	0.000331363
46	1	0.000123139	0.000536589	0.000317303
47	1	0.000568422	0.000419760	0.000211894
48	1	-0.000477116	0.000436486	0.000335112

NTN-PCZ (-1348.3478 a.u.)

Table S2: Cartesian coordinates for NTN-PCZ

Center	Atomic		Forces (Hartrees/	'Bohr)
Number	Number	Х	Y	Z
1	7	-0.000016581	0.000026199	-0.000010333
2	6	0.000032897	-0.000012302	0.000019670
3	6	-0.000008184	-0.000020837	-0.000005855
4	6	-0.000016805	0.000020000	-0.000024131
5	7	0.000010463	0.000006612	-0.000005260
6	6	0.000007701	-0.000033575	0.000041505
7	6	-0.000007793	0.000013823	0.000005868
8	6	0.000005372	0.000005113	0.000008039
9	6	0.000008799	-0.000004016	-0.000012003
10	6	-0.000016959	0.000016635	0.000012263
11	6	0.000008304	-0.000009035	0.000002185
12	6	-0.000000131	0.000002191	0.000003905
13	7	0.000022300	-0.000035087	-0.000020857
14	6	-0.000022224	0.000008857	0.000015129
15	6	0.000001006	-0.000006145	-0.000008298
16	6	0.000009388	-0.000006746	-0.000001464
17	6	-0.000006422	0.000026881	0.000007639
18	6	0.000001102	-0.000000938	-0.000002368
19	6	0.000000462	-0.000002608	-0.000004214
20	6	-0.00000587	0.00000159	-0.00000785
21	6	0.000000709	0.000004538	-0.000002861
22	6	-0.000002214	-0.000003133	0.000004703
23	6	-0.000001588	0.000001062	0.00000342
24	6	0.000002409	-0.000002177	0.00000011
25	6	0.000002301	-0.000001325	0.000002081

26	6	-0.000005300	0.000024576	-0.000019960
27	9	0.000001527	-0.000007447	-0.000004062
28	9	-0.000000512	-0.000003261	-0.000002221
29	9	0.000008034	-0.000008269	0.000010179
30	1	-0.000007322	0.000004693	-0.000009343
31	1	0.000003843	-0.000002649	0.000006952
32	1	-0.000001910	-0.000002632	-0.000002577
33	1	-0.000001156	-0.000000606	0.000002839
34	1	-0.000005032	0.000001477	-0.000003477
35	1	-0.00000364	-0.000001452	-0.000003565
36	1	0.000001048	0.000001440	-0.000001654
37	1	-0.000000541	0.000001277	-0.000001152
38	1	-0.00000319	0.000000409	-0.000001486
39	1	-0.000001739	-0.000001613	-0.000000467
40	1	0.00000632	0.000001089	-0.00000832
41	1	-0.000001119	-0.00000866	0.000001133
42	1	-0.000001445	-0.00000022	0.000002139
43	1	-0.00002048	-0.00000291	0.000002644

TN3T-PCZ (-1669.2877 a.u.)

Table S3: Cartesian coordinates for TN3T-PCZ

Center	Atomic	F	orces (Hartrees/B	ohr)
Number	Number	Х	Y	Z
1	6	-0.000004642	0.00000306	0.000006976
2	6	0.000004039	-0.000005521	0.000001609
3	6	-0.000006208	0.000007921	0.000007057
4	6	0.000006332	0.00000042	-0.000003313
5	7	0.000005869	-0.000003914	0.000000764
6	6	0.000007926	0.000004314	0.000003552
7	6	0.000012915	0.000002881	-0.000012187
8	6	0.000006088	-0.000005713	-0.000005037
9	6	0.000000391	-0.000000909	0.000003892
10	6	-0.000010248	0.000020648	0.000002171
11	6	0.000000659	-0.000008403	-0.000003969
12	6	-0.000008055	0.000001483	0.000006226
13	7	0.000014309	-0.000019620	0.000000709
14	6	-0.000007169	0.000002009	-0.000001934
15	6	-0.000001885	-0.000001293	-0.000003333
16	6	0.000000102	-0.000000562	-0.000000468
17	6	-0.000003623	0.000005937	-0.000003131
18	6	0.00000927	0.000000443	-0.000003472

19	6	-0.000002366	0.000001456	-0.000004704
20	6	-0.000001587	-0.000000439	-0.000004184
21	6	-0.000001687	0.000001793	-0.000005007
22	6	-0.000002478	-0.000002553	0.000001852
23	6	-0.000001625	-0.000001465	0.000001687
24	6	-0.000001508	-0.000001214	0.000003678
25	6	-0.000001215	-0.000002793	0.000002533
26	6	-0.000023764	-0.000017290	-0.000002950
27	9	0.000012325	0.000010020	-0.000003427
28	9	0.000002524	0.000001239	0.000003472
29	9	0.000011089	0.000007875	0.000008221
30	6	-0.000009549	-0.000004514	0.000006851
31	9	0.000007781	0.000003206	0.000004684
32	9	0.000003564	0.000004186	-0.000004655
33	9	0.000010791	0.000003191	-0.000004122
34	1	-0.00000070	-0.00000113	0.00000259
35	1	-0.000001887	0.00000242	0.000001408
36	1	-0.000004984	0.000001336	0.000009139
37	1	0.000002037	-0.00000294	0.00000850
38	1	-0.000001692	-0.00000066	-0.000001740
39	1	-0.00000048	-0.00000639	-0.000002032
40	1	-0.000001157	0.000001337	-0.000003334
41	1	-0.000000946	0.000001406	-0.000005872
42	1	-0.000001760	0.00000786	-0.000005715
43	1	-0.000002168	-0.000000447	-0.000002854
44	1	-0.000002283	-0.000001041	-0.00000331
45	1	-0.000002332	-0.000002148	0.000002848
46	1	-0.000001695	-0.000002188	0.000004249
47	1	-0.000001037	-0.00000919	0.000003083

TN4T-PCZ (-1669.2948 a.u.)

Table S4: Cartesian coordinates for TN4T-PCZ

Center	Atomic	F	orces (Hartrees/E	Bohr)	
Number	Number	Х	X Y		
1	6	0.000000936	-0.000004472	0.000000673	
2	6	-0.000000469	0.000003054	0.000003855	
3	6	0.000001544	-0.00000280	-0.000003027	
4	6	0.000000925	-0.000000921	0.000000742	
5	6	-0.000000657	-0.000001612	-0.00000840	
6	7	-0.000001524	0.000002215	-0.000001973	
7	6	-0.000001549	0.000002177	0.000002024	

8	6	0.00000926	-0.000001895	-0.000001073
9	6	-0.000001011	0.000000657	0.000001567
10	6	0.000001901	0.00000372	-0.000006120
11	6	-0.000001551	0.000001035	-0.00000325
12	6	0.00000450	-0.00000861	-0.000001165
13	7	-0.00000364	-0.00000063	0.000011281
14	6	0.000001175	-0.000000208	-0.000002948
15	6	0.000000149	0.000001718	-0.000000775
16	6	-0.000001006	0.000000179	0.00000375
17	6	-0.000001379	-0.000002469	-0.000004573
18	6	0.00000214	0.00000541	0.00000717
19	6	0.00000290	0.00000503	-0.000000225
20	6	0.00000389	0.00000242	-0.00000073
21	6	-0.00000810	0.000000113	-0.000001101
22	6	0.000001048	0.00000008	0.000001055
23	6	-0.00000325	-0.000000127	0.00000058
24	6	-0.00000281	-0.000000608	0.00000074
25	6	0.00000138	-0.000000196	0.000002156
26	6	-0.000001766	-0.000001902	-0.000001985
27	9	-0.000000119	0.000001367	-0.00000338
28	9	0.000001743	0.000001017	0.00000312
29	9	0.000002142	0.000001643	0.000001278
30	6	-0.000001775	-0.000000195	0.000000582
31	9	0.000001619	0.00000472	0.000001178
32	9	0.00000200	-0.000000215	-0.000001669
33	9	-0.000001520	-0.00000044	0.00000342
34	1	0.00000438	-0.000000742	-0.00000866
35	1	-0.00000804	-0.00000835	0.00000182
36	1	0.00000702	-0.000000155	0.000001233
37	1	0.000000415	-0.000000454	-0.00000082
38	1	-0.00000089	0.00000233	0.00000080
39	1	-0.00000260	0.000000423	-0.00000508
40	1	-0.00000272	-0.00000005	-0.000000960
41	1	-0.00000046	0.00000302	-0.00000792
42	1	-0.00000215	0.00000377	-0.000000402
43	1	-0.00000007	0.00000202	0.00000162
44	1	-0.000000167	0.00000103	0.00000091
45	1	0.00000056	-0.000000199	0.00000624
46	1	0.00000228	-0.00000301	0.000000591
47	1	0.00000339	-0.000000198	0.000000587

Table S5 : Calculated photophysical properties of four compounds

				•	
Compound	α ^[a] (°)	β ^[b] (°)	$f^{[c]}$	HOMO ^[d] (eV)	$LUMO^{[e]}(eV)$
DTF-PCZ	35.74	51.70	0.2912	-5.58	-1.72
NTN-PCZ	33.11	51.48	0.2912	-5.63	-2.20
TN3T-	54.05	52.05	0 1094	5 6 4	2 20
PCZ	54.95	32.93	0.1984	-3.04	-2.29
TN4T-	20.95	50.92	0 2700	5 ()	2.09
PCZ	30.83	30.83	0.2799	-3.62	-2.08

Fig. S1 Cyclic voltammetry of four compounds in negative voltage.

Fig. S2 Cyclic voltammetry of four compounds in positive voltage.

Fig. S3 TGA profiles of four compounds.

Fig. S4 DTA profiles of four compounds.

Fig. S5 Photoluminescence spectrum of **DTF-PCZ** at 300 K (red line) and 77 K (blue line) in toluene solution.

Fig. S6 Photoluminescence spectrum of NTN-PCZ at 300 K (red line) and 77 K (blue line) in toluene solution.

Fig. S7 Photoluminescence spectrum of TN3T-PCZ at 300 K (red line) and 77 K (blue line) in toluene solution.

Fig. S8 Photoluminescence spectrum of TN4T-PCZ at 300 K (red line) and 77 K (blue line) in toluene solution.

Fig. S9 Absolute quantum yield of DTF-PCZ in toluene solution.

Fig. S10 Absolute quantum yield of NTN-PCZ in toluene solution.

Fig. S11 Absolute quantum yield of TN3T-PCZ in toluene solution.

Fig. S12 Absolute quantum yield of TN4T-PCZ in toluene solution.

Fig. S13 Photoluminescence decay in nanosecond and microsecond scale of **DTF-PCZ** in degassed toluene.

Fig. S14 Photoluminescence decay in nanosecond and microsecond scale of **NTN-PCZ** in degassed toluene.

Fig. S15 Photoluminescence decay in nanosecond and microsecond scale of TN3T-PCZ in degassed toluene.

Fig. S16 Photoluminescence decay in nanosecond and microsecond scale of TN4T-PCZ in degassed toluene.

Fig. S17 (a) Luminance-voltage curve for type 1 devices; (b) Luminance-voltage curve for type 2 devices; (c) Current efficiency-luminance curve for type 1 devices; (d) Current efficiency-luminance curve for type 2 devices; (e) External quantum efficiency curve-luminance curve for type 1 devices; (f) External quantum efficiency-luminance curve for type 2 devices.

Figure S18: ¹H NMR (400 MHz, CDCl₃) spectra of DTF-PCZ

Figure S19: ¹³C NMR (101 MHz, CDCl₃) spectra of DTF-PCZ

Figure S20: ¹H NMR (400 MHz, CDCl₃) spectra of NTN-PCZ

Figure S21: ¹³C NMR (101 MHz, CDCl₃) spectra of NTN-PCZ

Figure S22: ¹H NMR (400 MHz, CDCl₃) spectra of TN3T-PCZ

Figure S23: ¹³C NMR (101 MHz, CDCl₃) spectra of TN3T-PCZ

Figure S24: ¹H NMR (400 MHz, CDCl₃) spectra of TN4T-PCZ

Figure S25: ¹³C NMR (101 MHz, CDCl₃) spectra of TN4T-PCZ