Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Supplementary

A hydrazine-based thiocarbamide probe for colorimetric and turn-on

fluoremetric detection of PO_4^{3-} and AsO_3^{3-} in semi-aqueous medium

Rakesh Purkait, Suvendu Maity, Chittaranjan Sinha*

Department of Chemistry, Jadavpur University, Kolkata 700 032, India, c_r_sinha@yahoo.com

Scheme S1 Synthesis of HTP

Fig S1. FT-IR spectrum of HTP.

Fig S2. ¹H NMR of HTP in DMSO- d_6

Fig S3 ESI-MS spectrum of HTP

Fig. S4. 2D supramolecular structure of HTP

Table S1 interactions in HTP

D-H···A	D-H	H···A (Å)	D····A (Å)	<d-< th=""><th>Symmetry</th></d-<>	Symmetry
	(Å)			H···A	
	(11)			(°)	
N4-H4S2	0.859	2.726	3.513	152.88	1.5-x,-
					1/2+y,1/2-z
N2-H2··· S1	0.861	2.586	3.416	162.17	1-x,3-y,1-z
C8-H8S2	0.930	2.933	3.700	140.74	1.5-x,-
					1/2+y,1/2-z
С9-Н9S1	0.932	2.879	3.721	151.07	1-x,3-y,1-z
H1-O1N1	0.821	1.969	2.690	146.13	

Fig. S5(a). Jobs plot for addition of AsO_3^{3-} with HTP in solution

Fig. S5(b). Jobs plot for addition of PO_4^{3-} with HTP in solution

Determination of binding constant

The binding constant value of arsenite and phosphate with **HTP** has been determined from the emission intensity data following the modified Benesi–Hildebrand equation, $1/\Delta F = 1/\Delta F_{max}$ + $(1/K[C])(1/\Delta F_{max})$. Here $\Delta F = F - F_{min}$ and ΔF max = $F_{max} - F_{min}$, where F_{min} , F, and F_{max} are the emission intensities of **HTP** considered in the absence of anions, at an intermediate anions concentration, and at a concentration of complete saturation where K is the binding constant and [C] is the anions concentration respectively. In this report we represent F_{min} as F_0 . From the plot

of $(F_{max}-F_0)/(F-F_0)$ against $[C]^{-1}$ for anions, the value of K has been determined from the slope. The association constant (K_d) as determined by fluorescence titration method for HTP with PO₄³⁻ is found to be $5.2 \times 10^4 \text{ M}^{-1}$ (error < 10%) and for HTP with AsO3³⁻ is found to be $1.0 \times 10^5 \text{ M}^{-1}$ (error<10%)

Fig S6(a) Benesi–Hildebrandplot for addition of AsO₃³⁻ with HTP

Fig S6(b) Benesi-Hildebrand plot for addition of PO₄³⁻ with HTP

Determination of detection limit:

The detection limit was calculated based on the fluorescence titration. To determine the S/N ratio, the emission intensity of HTP without any analyte was measured by 10 times and the standard deviation of blank measurements was found to be 0.206

The limit of detection (LOD) of HTP for PO_4^{3-} and AsO_3^{3-} was determined from the following equation: $LOD = K \times \sigma$ Where K = 3 in this case and $\sigma = (Sb_1)/(S)$; Sb_1 is the standard deviation of the blank solution; S is the slope of the calibration curve.

For AsO₃³⁻, From the graph we get slope = 3.9547×10^7 , and Sb₁value is 412.948 (**Fig. S7**). Thus using the formula we get the LOD = 5×10^{-9} M.

For PO₄³⁻, From the graph we get slope = 1.8122×10^7 , and Sb₁value is 412.948 (**Fig. S8**). Thus using the formula we get the LOD = 34×10^{-9} M.

Fig. S7(a) LOD plot for Arsenite

Fig S7(b) LOD plot for phosphate

Fig S8(a) Interference study of probe HTP with phosphate ion in the presence of foregin metal ion

Fig S8(b) Interference study of probe HTP with arsenite ion in the presence of foregin metal ion

Fig. S9. Effect of pH on fluorescence intensity of receptor HTP, HTP-PO₄³⁻ and HTP-AsO₃³⁻

Fig. S10(a) Decay profile of HTP and HTP-AsO₃³⁻

Fig. S10(b) Decay profile of HTP and HTP- PO_4^{3-}

Fig S11. ¹H NMR of **HTP**-AsO₃³⁻ in DMSO-d₆

Fig S12.¹H NMR of HTP-PO₄³⁻ in DMSO-d₆

Fig S13(a) ESI-MS spectrum of HTP-AsO3³⁻

Fig S13(b) ESI-MS spectrum of HTP-PO4³⁻

Table S2 Frontier molecular orbitals contributions of HTP

MO	Paracresoldiformyl	thiohydrazide
LUMO+10	48	52
LUMO+9	48	52
LUMO+8	12	88
LUMO+7	58	42
LUMO+6	62	38
LUMO+5	14	86
LUMO+4	33	67
LUMO+3	7	93
LUMO+2	17	83
LUMO+1	55	45
LUMO	62	38

НОМО	5	95
HOMO-1	58	42
HOMO-2	1	99
HOMO-3	29	71
HOMO-4	21	79
HOMO-5	20	80
HOMO-6	46	54
HOMO-7	26	74
HOMO-8	51	49
HOMO-9	39	61
HOMO-10	76	24

Table S3 Frontier molecular orbitals contributions of HTP-Phosphate

MO	phosphate	Paracresoldiformyl	thiohydrazide
LUMO+10	0	32	67
LUMO+9	0	61	39
LUMO+8	0	16	83
LUMO+7	0	36	64
LUMO+6	0	99	1
LUMO+5	0	57	43
LUMO+4	0	58	41
LUMO+3	1	7	93
LUMO+2	0	77	23
LUMO+1	0	58	41
LUMO	0	65	55
HOMO	94	1	5
HOMO-1	7	67	26
HOMO-2	91	5	4
HOMO-3	83	1	17
HOMO-4	12	2	86
HOMO-5	5	30	66
HOMO-6	4	23	87
HOMO-7	8	4	69
HOMO-8	87	2	9
HOMO-9	70	54	28
HOMO-10	3	14	43

Table S4 Frontier molecular orbitals contributions of HTP-Arsenite

MO	phosphate	Paracresoldiformyl	thiohydrazide

LUMO+10	13	7	79
LUMO+9	35	1	64
LUMO+8	10	84	6
LUMO+7	63	13	24
LUMO+6	2	1	97
LUMO+5	0	30	70
LUMO+4	0	100	0
LUMO+3	0	39	60
LUMO+2	0	62	38
LUMO+1	0	57	43
LUMO	0	64	36
HOMO	0	54	46
HOMO-1	3	8	90
HOMO-2	92	2	6
HOMO-3	0	11	89
HOMO-4	0	41	59
HOMO-5	2	5	93
HOMO-6	69	2	30
HOMO-7	5	26	70
HOMO-8	24	26	50
HOMO-9	1	48	51
HOMO-10	4	19	76

Fig. S14: Calibration plot between emission intensity of the probe HTP at 560 nm vs phosphate ion for the quantitative analysis of phosphate ion in water.

Fig. S15: Calibration plot between emission intensity of the probe HTP at 560 nm vs arsenite ion for the quantitative analysis of arsenite ion in water.