Supporting Information

Magneto-structural correlation of cyano-substituted 3-*tert*-butyl-1-phenyl-1,2,4-benzotriazin-4-yl: spin transition behaviour observed in a 6-cyano derivative

Yusuke Takahashi, Naoya Tsuchiya, Youhei Miura and Naoki Yoshioka*

Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan. E-mail: yoshioka@applc.keio.ac.jp

Table of Contents

Magnetic Properties	2
Crystallographic Data	3
Computational Data	6
EPR Data	8
UV-Vis Spectra	9
Cyclic Voltammograms	.10
IR Spectra	.11

Magnetic Properties

Fig. S1 Thermal dependence of $\chi_m T$ and χ_m for **7CN**. The solid lines represent the best-fit result of the 1D antiferromagnetic chain model (correlation factor $R = \Sigma [\chi_{m \text{ obs}} - \chi_{m \text{ calcd}}]^2 / \Sigma [\chi_{m \text{ obs}}]^2 = 5.25 \times 10^{-4}$).

Fig. S2 Temperature dependence of normalized χ_m and $\chi_m T$ of LT phase of Al foil wrapped sample of 6CN for the rough estimation of the magnitude of the intermolecular magnetic interaction using the Bleaney-Bowers model. The experimental and theoretical values of χ_m and $\chi_m T$ were normalized by the corresponding value of 240 K.

Crystallographic Data

 Table S1 Crystallographic data of 7CN and 6CN.

	7CN	6CN (HT)	6CN (LT) ^{<i>a</i>}
Chemical formula	$C_{18}H_{17}N_4$	$C_{18}H_{17}N_4$	$C_{18}H_{17}N_4$
Formula weight	289.36	289.36	289.36
Temperature / K	296	300	263
Crystal size / mm ³	$0.74 \times 0.17 \times 0.08$	$1.24\times0.54\times0.06$	$1.24\times0.54\times0.06$
Space group	<i>I</i> 2/ <i>a</i> (No. 15)	<i>I</i> 2/ <i>a</i> (No. 15)	<i>P</i> -1 (No. 2)
<i>a</i> / Å	18.709(3)	26.317(4)	6.8527(6)
<i>b</i> / Å	7.8316(12)	6.7524(7)	9.1813(9)
<i>c</i> / Å	21.501(6)	18.003(2)	13.1091(12)
$lpha$ / $^{\circ}$	90	90	86.834(3)
$meta$ / $^{\circ}$	90.945(4)	90.578(3)	80.616(3)
γ/°	90	90	74.983(3)
$V/\text{\AA}^3$	3149.9(11)	3199.0(7)	785.88(13)
Ζ	8	8	2
$d_{\rm calc}$ / g cm ⁻³	1.220	1.202	1.223
μ / mm ⁻¹	0.075	0.074	0.075
F(000)	1224	1224	306
$ heta$ (min, max) / $^{\circ}$	2.18, 23.02	2.73, 24.44	2.77. 25.10
	$-19 \le h \le 20$	$-30 \le h \le 30$	$-7 \le h \le 8$
Index ranges	$-8 \le k \le 8$	$-7 \le k \le 7$	$-10 \le k \le 10$
	$-23 \le l \le 22$	$-18 \le l \le 20$	$0 \le l \le 15$
Measured reflection	10772	13670	2512
Independent reflection	2106 (0.0496)	2605 (0.0641)	2512()
$(R_{\rm int})$	2190 (0.0480)	2003 (0.0041)	2312 (-)
Observed reflection	1422	1020	1707
$(I \ge 2\sigma(I))$	1422	1929	1707
Goodness of fit on F^2	1.380	1.396	1.103
$R, R_{\rm w} (I \ge 2\sigma(I))$	0.0702, 0.1891	0.0712, 0.2160	0.0647, 0.1763
$R, R_{\rm w}$ (all data)	0.1153, 0.2190	0.0901, 0.2370	0.0975, 0.2128
Resd density (min, max)	0 200 0 429	0 100 0 280	0 276 0 220
/ e Å-3	-0.300, 0.438	-0.190, 0.289	-0.270, 0.220

^{*a*} The data of LT phase for **6CN** was obtained as twinning crystal and it was analyzed using *TWINABS* program.

Fig. S3 ORTEP drawing of LT phase of 6CN (50% thermal ellipsoids).

Comp	ound	$d_{ m N1-N2}$ / Å	$d_{ m N2-C1}$ / Å	$d_{ m C1-N3}$ / Å	dihedral angle / °
7CN		1.375(3)	1.324(4)	1.335(4)	45.236(80)
	HT	1.360(3)	1.330(3)	1.332(3)	68.408(97)
OCIN	LT	1.364(3)	1.325(4)	1.339(4)	69.858(130)

 Table S2 Selected bond lengths and dihedral angle of benzotriazinyl radicals.

Fig. S4 Molecular arrangement of 7CN. The selected *tert*-butyl groups were omitted for clarity.

Table S3 The longitudinal and latitudinal slippages of 6CN.

Pair	T / K(phase)	ϕ_1 / °	ϕ_2 / °
тп	300 (HT)	50.8	66.0
1-11	263 (LT)	57.2	65.2
11 1,	300 (HT)	47.2	64.5
11-1	263 (LT)	43.2	67.1

Computational Data

Pair	Function	Spin state	Energy / a.u.	<s<sup>2></s<sup>	J/ cm^{-1}
		BS	-1829.6052263	1.027120	2.4
Dain A	UBSLIP	Т	-1829.6052110	2.027955	-3.4
Pair A		BS	-1828.7856173	1.003589	<u>٥</u> ٦
_	UBLIP	Т	-1828.7855779	2.008456	-8./
		BS	-1829.6155189	1.027472	+0.2
	Т	-1829.6155196	2.027491	+0.2	
Pair B		BS	-1828.7979382	1.008204	0.04
	UBLIP	Т	-1828.7979380	2.008332	-0.04
		BS	-1829.6079463	1.027894	0.04
U.	UBSLIP	Т	-1829.6079461	2.027898	-0.04
PairC		BS	-1828.7908988	1.008365	0.11
	UBLYP	Т	-1828.7908983	2.008430	-0.11

Table S4 The calculation result of the intermolecular interaction for **7CN** at UB3LYP and UBLYP level, and 6-31G(d) basis set. BS and T represent broken symmetry singlet and triplet state.

Fig. S5 Overlap of SOMOs for (a) 7CN, (b) 6CN(HT) and (c) 6CN(LT).

Pair	Swin state	En anora / a u	< 62>	$2L/am^{-1}$	
(Phase)	Spin state	Energy / a.u.	-	2J / Cm ²	
	BS	-1829.5998682	1.025442	. 4 . 7	
1-11(111)	Т	-1829.5998784	2.027256	+4.5	
	BS	-1829.6097942	0.980403	507.5	
1-11(L1)	Т	-1829.6085162	2.027684	-38/.3	
	BS	-1829.5974589	1.026153	⊥10.0	
п-г (пт)	Т	-1829.5974837	2.027356	+10.9	
II-I'(LT)	BS	-1829.6107765	1.025442	147 5	
	Т	-1829.6104445	2.027256	-14/.3	

Table S5 The calculation results of **6CN** at UB3LYP/6-31G(d) level. BS and T represent broken symmetry singlet and triplet state.

EPR Data

Fig. S6 EPR spectra of (a) **7CN** and (b) **6CN** in toluene at room temperature; black and red lines denote the observed and simulated spectra, respectively.

	hfcc / mT		
nuclei	7CN	6CN	
N1	0.752	0.687	
N2	0.462	0.516	
N3	0.495	0.517	
CN	0.113	0.800	
Н3	0.125	0.120	
H4	0.117	-	
Н5	-	0.169	
Н6	0.113	0.101	
Н9,13	0.061	0.066	
H10, 12	0.060	0.053	
H11	0.061	0.048	
g-factor	2.0039	2.0040	

Table S6	The hfccs	and g-factor	r of 7CN	and 6CN.
----------	-----------	--------------	----------	----------

7CN: X = CN, Y = H 6CN: X = H, Y = CN

UV-Vis Spectra

Fig. S7 UV-Vis spectra of 7CN(blue) and 6CN(orange) in CH₂Cl₂.

Table S7 The wavelength of maximum absorption (λ_{max}) of 7CN and 6CN.

Compound	λ_{max} (molar absorbance coefficient, $\epsilon/10^3 \text{ M}^{-1} \text{ cm}^{-1}$)
7CN	250(28.4), 263(18.4), 323(8.33), 352(7.30), 441(3.82)
6CN	255(25.4), 276(13.2), 319(7.17), 356(6.78), 435(3.10), 632(0.764)

Cyclic Voltammograms

The cyclic voltammograms of 7CN and 6CN are shown in Figure S8. Two reversible waves corresponding to the reduction and oxidation processes were observed.

Figure S8. Cyclic voltammograms of **7CN** and **6CN** in CH₃CN containing 0.1 M tetrabutylammonium hexafluorophosphate as the supporting electrolyte.

Commenced	Potential (vs. Fc/Fc ⁺)	
Compound	E_1	E_2
7CN	-1.03	-0.01
6CN	-1.07	0.174

Table S8 The redox potential of 7CN and 6CN.

IR Spectra

