Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

> Electronic Supplementary Information (ESI) for New Journal of Chemistry This journal is (c) The Royal Society of Chemistry 2017

Supporting Information

Facile synthesis of FeCo alloys encapsulated in nitrogen-doped

graphite/carbon nanotube hybrids: efficient bi-functional

electrocatalysts for oxygen and hydrogen evolution reactions

Bing Du,^a Qing-Ting Meng,^a Jing-Quan Sha,^a* and Ji-Sen Li^{a,b}*

^aKey Laboratory of Inorganic Chemistry in Universities of Shandong, Department of Chemistry and Chemical Engineering, Jining University, Qufu, Shandong 273155, China

^bCollege of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Shandong 250014, China

*E-mail: senjili@sina.com

S1. Figures in Supporting Information

Fig. S1 PXRD patterns of the as-synthesized of $Fe_2(OH)_2(C_8H_4O_4)$, $Co_2(OH)_2(C_8H_4O_4)$, and $(Co_{0.5}Fe_{0.5})(OH)_2(C_8H_4O_4)$, respectively.

Fig. S2 Raman spectra of Fe/Fe₃C@NG/NCNT, Co@NG/NCNT, and FeCo@NG/NCNT, respectively.

Fig. S3 XPS survey spectra (a) and high-resolution XPS spectra of (b) C 1s, (c) N 1s, (d) Fe 2p, and (e) Co 2p of FeCo@NG/NCNT.

The chemical compositions and valence states of the obtained sample were investigated by X-ray photoelectron spectra (XPS), as shown in **Fig. S3**. The XPS survey spectrum dislays the hybrid is composed of C, N, Fe, Co, O (**Fig. S3a**). The C1s XPS spectrum shown in **Fig. S3b** reveals four peaks at 284.5, 285.1, 286.5, and 289.9 eV, assigned to C-C/C=C, C-N, C-O, and π - π * satellite, respectively. The deconvolution of N1s energy level signals exhibit three peaks at 398.1, 399.2, and 400.4 eV (**Fig. S3c**), which are ascribed to pyridinic-N, pyrrolic-N, and graphitic-N, respectively. Generally, pyridinic-N, and graphitic-N is beneficial to boosting catalytic activity. As presented in **Fig. S3d**, the two peaks at 706.9 and 719.7 eV should be ascribed to metallic Fe 2p_{3/2} and Fe 2p_{1/2}, respectively. As well, the high resolution Co 2p XPS exhibits two peaks at 778.2 and 793.9 eV (**Fig. S3e**), corresponding to metallic Co. Noticeably, it was found that oxidation states of Fe and Co are also detected due to the surface oxidation when exposed to air.

Fig. S4 PXRD patterns and Raman spectra of Fe/Fe₃C@NG/NCNT, Co@NG/NCNT, and FeCo@NG/NCNT, respectively.

For Co@NG/CNT, it is clearly seen that the characteristic peaks of (111) at 44.2°, (200) at 51.5°, and (220) at 75.8°, which are well matched with the Co phase (JCPDS, No, 89-4307) (**Fig. S4**). For Fe/Fe₃C@NG/NCNT, the three distinct peaks located around 44.7°, 64.9°, and 82.2° belong to the (110), (200), and (211) planes of a cubic Fe phase (JCPDS, No, 89-7194) (**Fig. S4**). Besides, an amount of Fe₃C (JCPDS, No, 89-2867) is also detected.

Fig. S5 (a) SEM, (b-c) TEM, and (d) HRTEM images of Fe/Fe₃C@NG/NCNT.

Fig. S6 (a) SEM, (b-c) TEM, and (d) HRTEM images of Co@NG/NCNT.

Fig. S7 (a-b) EDX of Co@NG/NCNT, and Fe/Fe₃C@NG/NCNT, respectively.

Fig. S8 (a) N_2 adsorption-desorption isotherms and (b) the corresponding pore size distribution of FeCo@NG/NCNT, Fe/Fe₃C@NG/NCNT, and Co@NG/NCNT. For clarity, isotherms of Co@NG/NCNT , and FeCo@NG/NCNT are offset by 40, and 100 cm³ g⁻¹.

 N_2 adsorption-desorption isotherms were adopted to examine the specific surface area and pore size of these samples (**Fig. S8**). The Brunauer-Emmett-Teller (BET) surface area of Fe/Fe₃C@NG/NCNT, and Co@NG/NCNT were determined to be 102.7, and 105.1 m² g⁻¹, respectively. The corresponding pore size distribution is centered at about 4 nm by Barrett-Joyner-Halenda (BJH) method, suggesting the presence of mesoporous structure.

Fig. S9 (a) XPS survey spectrum and high resolution XPS spectra of (b) C 1s, (c) N 1s, and (d) Fe 2p of Fe/Fe₃C@NG/NCNT, respectively.

Fig. S10 (a) XPS survey spectrum and high resolution XPS spectra of (b) C 1s, (c) N 1s, and (d) Co 2p of Co@NG/NCNT, respectively.

Fig. S11 (a) SEM, (b-c) TEM, and (d) HRTEM images of FeCo@NG/NCNT-800.

Fig. S12 (a) SEM, (b-c) TEM, and (d) HRTEM images of FeCo@NG/NCNT-1000.

Fig. S13 (a-b) PXRD patterns and Raman spectra of FeCo@NG/NCNT carbonized at 600, 800, and 1000 °C, respectively. (c-d) EDS of FeCo@NG/NCNT carbonized at 800, and 1000 °C, respectively.

Fig. S14 XPS survey spectra (a) and high-resolution XPS spectra of (b) C 1s, (c) N 1s, (d) Fe 2p, and (e) Co 2p of FeCo@NG/NCNT carbonized at 600, 800, and 1000 °C, respectively.

Fig. S15 (a) OER polarization curves of FeCo@NG/NCNT carbonized at 600, 800, and 1000 °C, respectively. (b) Corresponding Tafel plots of a.

Fig. S16 (a) HER polarization curves of FeCo@NG/NCNT carbonized at 600, 800, and 1000 °C, respectively. (b) Corresponding Tafel plots of a.

S2. Tables in Supporting Information

	Elemental composition (at %)			
Materials	Fe _{2p}	Co _{2p}		
FeCo@NG/NCNT	1.65	1.46		
Fe/Fe ₃ C@NG/NCNT	3.03	0		
Co@NG/NCNT	0	3.64		
FeCo@NG/NCN-800	1.42	1.35		
FeCo@NG/NCN-1000	1.72	1.83		

Table S1. Elemental compositions of the catalysts determined by ICP, respectively.

Table S2. El	emental comp	ositions of the	ese catalysts	determined b	y XPS, re	espectively.

Materials	Elemental composition (at %)					
	C_{1s}	N_{1s}	Fe _{2p}	Co _{2p}	O_{1s}	
FeCo@NG/NCNT	78.96	5.21	1.22	1.19	13.42	
Fe/Fe ₃ C@NG/NCNT	76.26	9.3	2.54	0	11.9	
Co@NG/NCNT	80.78	6.85	0	3.22	9.15	
FeCo@NG/NCN-800	81.4	3.22	1.12	1.02	13.24	
FeCo@NG/NCN-1000	90.95	1.35	1.34	1.45	4.91	

Table S3. Comparison of OER performance in basic media for FeCo@NG/NCNT
with other non-noble metal electrocatalysts.

Catalyst	Onset potential [mV] ^[a]	Tafel slope [mV dec ⁻¹]	η_{10} $[mV]^{[a]}$	Reference	
FeCo@NG/NCNT	1.54	77	450	This work	
Co ₃ O ₄ -MTA	1.52	84		Angew. Chem. Int. Ed., 2017, 56 , 1324-1328	
Ni@NC-800	1.45	45	280	Adv. Mater., 2017, 29 , 1605957	
NiCo/PFC		106	400	Nano Lett., 2016, 16, 6516-6522	
FeNi ₃ N/Ni foam	1.43	40	202	Chem. Mater., 2016, 28 , 6934-6941	
Co@NCNTs		128	410	<i>J. Power Source</i> , 2017, 338 , 26-33	
NPCN/CoNi-NCNT	1.57	165	360	Small, 2015, 11 , 5940-5948	
Porous Ni-P foam		179.9	332	J.Mater. Chem. A, 2016, 4 , 5639-5646	
Ni-P	1.48	64	330	Energy Environ. Sci., 2016, 9, 1246-1250	
Co ₃ O ₄ NCs	1.52	101		Chem. Commun., 2015, 51 , 8066-8069	
^{a]} represents the overpotential (η) at the current density of 10 mA cm ⁻² . The potential measured versus					

RHE.

Table S4. Comparison of HER performance in basic media for FeCo@NG/NCNT
with other non-noble metal electrocatalysts.

Catalyst	Onset overpotential [mV] ^[a]	Tafel slope [mV dec ⁻¹]	η_{10} $[\mathrm{mV}]^{[\mathrm{a}]}$	Reference
FeCo@NG/NCNT	75	110	332	This work
Ni@NC-800	105	160	205	Adv. Mater., 2017, 29 , 1605957
Co ₃ O ₄ -MTA	100	98		Angew. Chem. Int. Ed., 2017, 56 , 1324-1328
FeCo		77	211	ACS Catal., 2017, 7, 469-479.
FeNi3N/Ni foam		98	75	Chem. Mater., 2016, 28 , 6934-6941
MnNi	150		360	Adv. Funct. Mater., 2015, 25 , 393-399.
NiSe/NF		120	96	Angew. Chem. Int. Ed., 2015, 54, 9351-9355
Co ₃ O ₄ NCs	50	116	380	Chem. Commun., 2015, 51 , 8066-8069.
Co-NRCNTs			370	Angew. Chem. Int. Ed., 2014, 53 , 4372-4376
N-Co@G	70		337	ACS Appl. Mater. Interfaces, 2015, 7 , 8083-8087
Co@Co-N-C	78	59	314	Chem. Commun., 2015, 51 , 8942-8945

^[a] represents the overpotential (η) at the current density of 10 mA cm⁻². The potential measured versus RHE.