Electronic Supplementary Information (ESI)

SYNTHESIS OF NOVEL AIEE ACTIVE PYRIDOPYRAZINES AND THEIR APPLICATIONS AS CHROMOGENIC AND FLUOROGENIC PROBES FOR Hg²⁺ DETECTION IN AQUEOUS MEDIA

Shalu Gupta, Marilyn D. Milton*

Department of Chemistry, University of Delhi, Delhi 110007, India

*Corresponding author. Tel.: +91 11 27667794 Extn. 140.

E-mail address: mdmilton@chemistry.du.ac.in

Contents:

1. General experimental procedure	S1
2. Crystal data and structure refinement for probe PP1	S2-S3
3. Multiple intermolecularinteraction and crystal packing in the PP1	S4
4. Absorbance spectra of PP2, PP3 and PP4 at different water ratio	
5. Images of PP2, PP3 and PP4 in presence of various metal ions	
6. Fluorescence spectra of PP1 and PP2 upon addition of Hg^{2+} in different water fractional fraction of Hg^{2+} in the spectra of	ctionsS7
7. Absorbance and Fluorescence spectra of PP2 , PP3 and PP4 in the presence meta	ul cationS9-S10
8. Determination of detection limit for PP1	
9. Absorbance and Fluorescence titration of probe PP2 with Hg ²⁺	S11
10. Determination of detection limit for PP2	S12
11. Fluorescence titration of probe PP3 and PP4 with Hg^{2+}	
12. Determination of detection limit for PP3 and PP4	S13-14
13. Job's plot for probe PP3 and PP4	S14
14. ¹ HNMR of PP2, PP3 and PP4 before and after addition of Hg ²⁺	
15. Reversibility spectra of PP2	S18
16. Benesi-Hildebrand plot for PP1, PP2, PP3 and PP4	S18-19
17. Table S2. Comparison table	
18. ¹ H NMR and ¹³ C NMR spectrum of PP1, PP2, PP3 and PP4	S21-28
19. HRMS data of PP1, PP2, PP3 and PP4	
20. References	

General method for preparation of solutions for fluorescence and absorption measurements:

The stock solutions of 2×10^{-3} M concentration of synthesized compounds were prepared in HPLC acetonitrile and diluted accordingly. All the studies were performed in non-buffered media. 0.015 M stock solution of metal salts were prepared in HPLC water and diluted accordingly. For AIEE studies 0.15 mL of stock solution was taken and diluted accordingly acetonitrile & water. While determining selectivity of interaction of probes with metal ion, titrations were performed by adding 0.1 mL of metal salt solutions to 3 mL solutions of probes. The binding stoichiometry was determined by Job's plot experiments.

Determination of detection Limit:-

The detection limit was calculated using fluorescence titration spectra. The detection limit of probe PP-Hg for Hg^{2+} was determined from the followingequation:

$$DL = 3S/b$$
 Equation S1

where S is the standard deviation of blank measurements, *b* is the slope of fluorescence intensity versus concentration Hg^{2+} .¹ Where standard deviation is calculated using the formula

$$S = \sqrt{\frac{\sum (Io - I)^2}{N - 1}}$$

 I_0 is the fluorescence intensity of probe and I isoverage of the I_0 .

The calculation of association constant (K_a)

For 1:n stoichiometry between chemosensor and metal ion, the Benesi-Hildebrand equation could be derived as:²

$$\frac{1}{I-I_0} = \frac{1}{K_a(Imax-I_0)[M]_0^n} + \frac{1}{Imax-I_0}$$
 Equation S2

Where I is the intensity of chemosensor at the maximum absorption wavelength after treatement with metal ion, I_{max} is the largest intensity of chemosensor at the maximum absorption

wavelength with excess amount of metal ion, I_0 is the initial intensity of chemosensor, [M] is the concentration of metal ion-added, K_a is the association constant and n is the stoichiometric ratio.

Empirical formula	C ₃₄ H ₂₀ Cl ₃ N ₅
Formula weight	604.90
Temperature	298 K
Wavelength	0.71073 Å
Crystal system	Monoclinic
Space group	P_{121}/n_1
Unit cell dimensions	a = 9.0622 (7) Å
	b = 16.3810(13) Å
	c = 19.4841(16) Å
	α=90.00(7) °
	β=102.514(7)°
	γ= 90.00(6)°
Volume	2823.6(4) Å ³
Z	4
Density (calculated)	1.423Mg/m ³
Absorption coefficient	0.359mm ⁻¹
F(000)	1240
Crystal size	$0.24 \ge 0.16 \ge 0.12 \text{ mm}^3$
Theta range for data collection	3.01to 29.40°.

Table S1. Crystal data and structure refinement for probe PP1.

Index ranges	-12<=h<=12, -22<=k<=22, -
	26<=l<=24
Reflections collected	3110
Independent reflections	7068 [R(int) = 0.0939]
Completeness to theta = 25.242°	99.8 %
Refinement method	Full-matrix least-squares on F2
Data / restraints / parameters	7068 / 0 / 354
Goodness-of-fit on F2	1.022
Final R indices [I>2sigma(I)]	$R_1 = 0.0923, wR_2 = 0.1803$
R indices (all data)	$R_1 = 0.2076, wR_2 = 0.2316$
Extinction coefficient	n/a
Largest diff. peak and hole	0.517and -0.497e.Å ⁻³

Figure S1. Multiple intermolecular C^{...}H-C, C-C interaction existed in the PP1.

Figure S2. Crystal packing of **PP1** when viewed along (i) *a* axis (ii) *b* axis showing layered arrangement of molecules.

Figure S3. Absorption spectra (10 μ M) of **PP1** in H₂O-CH₃CN mixture with different water fractions.

Figure S4. Absorption spectra (10 μ M) of (i) PP2 and (ii) PP3 in H₂O-CH₃CN mixture with different water fractions.

Figure S5.Absorption spectra (10 μ M) of **PP4** in H₂O-CH₃CN mixture with different water fractions.

i)

Figure S6. Photographs of solution of probe **PP2** in CH_3CN-H_2O (8:2, v/v) in the presence of various metal ions (10 eq) (from right to left) i) under ambient light ii) under a UV irradiation at 365 nm.

Figure S7. Fluorescence spectra of **PP1**(50 μ M) upon addition of Hg²⁺(10 eq.) in H₂O-CH₃CN mixture with different water fractions (*f*_w).

Figure S8. Fluorescence spectra of **PP2** (50 μ M) upon addition of Hg²⁺(10 eq.) in H₂O-CH₃CN mixture with different water fractions (*f*_w).

Figure S9. Photographs of solution of probe **PP3** in CH_3CN-H_2O (7:3, v/v) in the presence of various metal ions (10 eq) (from right to left) i) under ambient light ii) under a UV irradiation at 365 nm.

Figure S10. Photographs of solution of probe **PP4** in CH_3CN-H_2O (9:1, v/v) in the presence of various metal ions (10 eq) (from right to left) i) under ambient light ii) under a UV irradiation at 365 nm.

Figure S11.(i) Absorption spectra (10 μ M) and (ii) fluorescence spectra (50 μ M) of **PP2** in CH₃CN-H₂O (8:2, v/v) on addition of 10eq. of various metal cations (metal nitrates were studied).

Figure S12. (i) Absorption spectra (10 μ M) and (ii) fluorescence spectra (50 μ M) of **PP3** in CH₃CN-H₂O (7:3, v/v) on addition of 10eq. of various metal cations (metal nitrates were studied).

Figure S13.(i) Absorption spectra (10 μ M) and (ii) fluorescence spectra (50 μ M) of **PP4** in CH₃CN-H₂O (9:1, v/v) on addition of 10eq. of various metal cations (metal nitrates were studied).

Figure S14.Determination of detection limit based on fluorescence intensity at 518 nm of PP1with Hg²⁺ ($\lambda_{ex} = 356$ nm). Linear equation = 22.51244x + 58.87224, R² = 0.99328, (S = 0.08560)

Figure S15. Absorption spectra of probe PP2 (10 μ M) upon addition of increasing concentration (0-10 eq.) of Hg²⁺ in CH₃CN-H₂O (8:2, v/v).

Figure S16. Fluorescence spectra of probe **PP2** (50 μ M) upon addition of increasing concentration (0-4eq.) of Hg²⁺ in CH₃CN-H₂O (8:2, v/v).

Figure S17. Determination of detection limit based on fluorescence intensity at 536 nm of PP2 with Hg²⁺ (λ_{ex} = 358 nm). Linear equation = 21.79422x + 45.55515, R² = 0.97889, (S = 0.06937)

Figure S18. Fluorescence spectra of probe **PP3** (50 μ M) upon addition of increasing concentration (0-4eq.) of Hg²⁺ in CH₃CN-H₂O (7:3, v/v).

Figure S19. Fluorescence spectra of probe **PP4** (5 μ M) upon addition of increasing concentration (0-2eq.) of Hg²⁺ in CH₃CN-H₂O (9:1, v/v).

Figure S20. Determination of detection limit based on fluorescence intensity at 480 nm of PP3 with Hg^{2+} ($\lambda_{ex} = 364$ nm). Linear equation = -41.89701x + 707.71231, R² = 0.98077, (S = 0.46900)

Figure S21. Determination of detection limit based on fluorescence intensity at 498 nm of PP4 with Hg^{2+} ($\lambda_{ex} = 368$ nm). Linear equation = -103.84564x + 816.3198, R² = 0.96886, (S = 0.28300)

Figure S22.Job's plot for stoichiometric determination of probe (i) PP3 and (ii) PP4 Hg^{2+} ions.

Figure S23. Partial ¹H NMR spectra of probe **PP2** in DMSO-d₆ (i) before and (ii) after addition of Hg^{2+} (1eq.).

Figure S24. Partial ¹H NMR spectra of probe **PP3** in DMSO-d₆ (i) before and (ii) after addition of Hg^{2+} (1eq.).

Figure S25. Partial ¹H NMR spectra of probe **PP4** in DMSO-d₆ (i) before and (ii) after addition of Hg^{2+} (1eq.).

Figure S26. (i) Flourescence spectra of **PP2** in CH₃CN-H₂O (8:2, v/v) **PP2** + Hg²⁺, **PP2** + Hg²⁺ + Γ ii) Reversibility cycle of **PP2** (measured at λ_{emm} 536nm) after simultaneous addition of Hg²⁺ and Γ .

Figure S27. Fluorescence spectra of (i) **PP1** (ii) **PP2** (iii) **PP3** and (iv) **PP4** (50 μ M) in the presence of Hg²⁺ with different counterions.

Figure S28. Benesi-Hildebrand plot for calculation of binding constant for complex formation between (i) **PP1** and Hg^{2+} (ii) **PP2** and Hg^{2+} .

Figure S29. Benesi-Hildebrand plot for calculation of binding constant for complex formation between (i) **PP3** and Hg^{2+} (ii) **PP4** and Hg^{2+} .

Previous Literature	Solvent	Limit of detection
1. Applied Materials & Interfaces, 2010, 2, 1066 ³	THF	$5 \times 10^{-7} \mathrm{M}$
2. Spectrochimica Acta Part A, 2012, 93, 245 ⁴	DMSO	0.1 μM
3. Tetrahedron, 2013, 69, 1965 ⁵	CH ₃ CN/H ₂ O	1.74 μM
	(4:1; V/V)	
4. Sensors and Actuators B , 2014, 196, 388 ⁶	Acetonitrile:Water	4.60 μΜ
	7:3	
5. Dyes and Pigments, 2015, 113, 763 ⁷	DMF/Water	$2.20 \times 10^{-6} \mathrm{M}$
	1:1	
6. Journal of Luminscence, 2016, 175, 182 ⁸	THF/H ₂ O	$3.952 \times 10^{-7} \mathrm{M}$
	(7/3; V/V)	
7. Tetrahedron, 2017, 73, 2824 ⁹	THF/H ₂ O	0.36 µM
	(99:1; V/V)	
8. Journal of Photochemistry and Photobiology A:	THF/H ₂ O	0.089 µM
Chemistry 2017, 332, 293 ¹⁰	(99:1; V/V)	
9. This Work	Acetonitrile/water	
	PP1 (5:5; V/V)	$1.14 \times 10^{-7} \mathrm{M}$
	PP2 (8:2; V/V)	$9.55 \times 10^{-8} \mathrm{M}$
	PP3 (7:3; V/V)	$3.37 \times 10^{-7} \mathrm{M}$
	PP4 (9:1; V/V)	$8.17 \times 10^{-8} \mathrm{M}$

Table S2. Comparison of proposed probes with previously reported chemosensors

Figure S30. ¹H NMR (400 MHz, CDCl₃) spectrum of PP1.

Figure S31. ¹³C NMR (100 MHz, CDCl₃) spectrum of **PP1**.

Figure S32. ¹H NMR (400 MHz, CDCl₃) spectrum of PP2.

Figure S33. ¹³C NMR (100 MHz, CDCl₃) spectrum of PP2.

Figure S34. ¹H NMR (400 MHz, CDCl₃) spectrum of PP3.

Figure S35. ¹³C NMR (100 MHz, CDCl₃) spectrum of PP3.

Figure S36. ¹H NMR (400 MHz, CDCl₃) spectrum of **PP4.**

Figure S37. ¹³C NMR (100 MHz, CDCl₃) spectrum of **PP4.**

1.

DB Formula

C33 H19 N5

MS Spectrum Peak List

m/z	z	Abund	Formula	Tou
486.1711	1	117433.75	C33 H19 N5	(M+H)+
487.1742	1	44651.36	C33 H19 N5	(M+H)+
488.1772	1	8005.28	C33 H19 N5	(M+H)+
489.1827	1	1089.34	C33 H19 N5	(M+H)+

T

--- End Of Report ---

Figure S38. HRMS data of PP1.

Data File Sample Type Instrument Name Acq Method IRM Calibration Status Comment GS-125P.d Sample Instrument 1 29.10.2014.m

Info.

GS-125P P1-C2 24-05-2017 13:43:57 Default.m

 Sample Group

 Acquisition SW
 6200 series TOF/6500 series

 Version
 Q-TOF B.05.01 (B5125)

Compound Table

Compound Label	RT	Mass	Formula	MFG Formula	MFG Diff (ppm)	DB Formula
Cpd 10: C35 H25 N3 O2	11	519.1956	C35 H25 N3 O2	C35 H25 N3 O2	-1.83	C35 H25 N3 O2

Sample Name

Acquired Time

Position

User Name

DA Method

Compound Label	m/z	RT	Algorithm	Mass
Cpd 10: C35 H25 N3 O2	520.2037	11	Find by Molecular Feature	519.1956

MFE MS Spectrum

MFE MS Zoomed Spectrum

MS Spectrum Peak List

m/z	z	Abund	Formula	Ion
520.2037	1	107599.23	C35 H25 N3 O2	(M+H)+
521.2068	1	40720.06	C35 H25 N3 O2	(M+H)+
522.2107	1	8536.36	C35 H25 N3 O2	(M+H)+
523.2155	1	1276.29	C35 H25 N3 O2	(M+H)+
524.2289	1	119.44	C35 H25 N3 O2	(M+H)+
542.185	1	5215.81	C35 H25 N3 O2	(M+Na)+
543.1876	1	1978.92	C35 H25 N3 O2	(M+Na)+
544.1908	1	494.43	C35 H25 N3 O2	(M+Na)+

---- End Of Report ----

Figure S39. HRMS data of PP2.

Qualitative Compound Report

Figure S40. HRMS data of PP3.

Qualitative Compound Report

Figure S41. HRMS data of PP4.

- S. Madhu, D. K. Sharma, S. K. Basu, S. Jadhav, A. Chowdhury and M. Ravikanth, *Inorg. Chem.*, 2013, **52**, 11136-11145.
- Y. Fang, X. Li, J.-Y. Li, G.-Y. Wang, Y. Zhou, N.-Z. Xu, Y. Hu and C. Yao, Sens. Actuators B Chem., 2018, 255, 1182-1190.
- 3. X. Cheng, Q. Li, J. Qin and Z. Li, ACS Appl. Mater. Interfaces, 2010, 2, 1066-1072.
- J. Liu, M. Yu, X.-C. Wang and Z. Zhang, Spectrochim. Acta. A. Mol. Biomol. Spectrosc., 2012, 93, 245-249.
- 5. H.-F. Wang and S.-P. Wu, Tetrahedron, 2013, 69, 1965-1969.
- 6. S. Lee, B. A. Rao and Y.-A. Son, Sens. Actuators B Chem., 2014, 196, 388-397.
- 7. S. Malkondu and S. Erdemir, *Dyes Pigments*, 2015, **113**, 763-769.
- 8. X. Wu, Q. Niu, T. Li, Y. Cui and S. Zhang, J. Lumin., 2016, 175, 182-186.
- 9. Q. Zhang, J. Zhang, H. Zuo, C. Wang and Y. Shen, *Tetrahedron*, 2017, 73, 2824-2830.
- 10. 1Q. Zhang, Y. Li, H. Zuo, C. Wang and Y. Shen, J. Photochem. Photobiol. Chem., 2017, 332, 293-298.