Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Electronic supplementary information for

Visible-light-enabled denitrative carboxylation of β -nitrostyrenes:

A direct photocatalytic approach to cinnamic acids[†]

Shubhangi Tripathi and Lal Dhar S. Yadav*

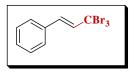
Green Synthesis Lab, Department of Chemistry, University of Allahabad

Allahabad-211002, India

E-mail: ldsyadav@hotmail.com

S. No.	Contents	Page No.
Ι	General information	S1
II	General procedure for the synthesis of cinnamic acids	S1
III	Characterization data for the intermediate (<i>E</i>)-3,3,3-tribromoprop-1-enyl)-benzene (3a)	S2
IV	Characterization data for the compounds 2	S2-S6
v	Copies of ¹ H and ¹³ C NMR spectra	S7-S19

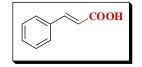
I. General Information:


All commercially available reagents were obtained from commercial suppliers and used without further purification. Solvents were purified by the usual methods and stored over molecular sieves. All reactions were performed using oven-dried glass ware. Organic solutions were concentrated using a Buchi rotary evaporator. Flash chromatography was carried out over silica gel (Merck 200– 300 mesh) and TLC was performed using silica gel GF254 (Merck) plates. ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) spectra were recorded on a Bruker AVII spectrometer in CDCl₃ using TMS as an internal reference with chemical shift values being reported in ppm. All coupling constants (*J*) are reported in Hertz (Hz). MS (EI) spectra were recorded on double focusing mass spectrometer. Luxeon Rebel high power 7 W blue LEDs ($\lambda_{max} = 447.5$ nm) were used as visible light source.

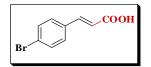
II. General procedure for the synthesis of cinnamic acids 2:

A mixture of β -nitrostyrene1 (1 mmol), CBr₄ (1.5 equiv), Ru(bpy)₃Cl₂ (**A**, 1 mol%), ^{*i*}Pr₂NH (2 mmol), CH₃CN (3 mL) and H₂O (0.5 mL) was irradiated through the flask's bottom side using 7 W blue LEDs under a nitrogen atmosphere at rt for 10 h. After the completion of reaction (as indicated by TLC), it was quenched with saturated aqueous sodium hydrogen carbonate (5 mL) and extracted with ethyl acetate (3 × 10 mL). The combined organic phases were dried over anhyd. MgSO₄, filtered and concentrated under reduced pressure to yield the crude product, which was purified by silica gel column chromatography using a mixture of ethyl acetate-hexane to afford an analytically pure sample of **2**. The characterization data and the copies of ¹H and ¹³C NMR spectra of the intermediate **3a** and the products **2** are given below:

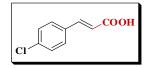
Characterization data for the intermediate:


(E)-3,3,3-tribromoprop-1-enyl)-benzene (3a)

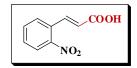
Yield 96%; ¹H NMR (400 MHz, CDCl₃): δ 7.46-7.40 (m, 2H), 6.73 (d, 1H, *J* = 16 Hz); 7.36-7.33 (m, 3H), 6.40 (d, 1H, *J* = 16.1 Hz); ¹³C NMR (100 MHz, CDCl₃): δ 137.4, 135.8, 130.5, 128.9, 127.6, 123.5, 23.0; HRMS (EI) calcd for C₉H₇Br₃: 351.8098; found: 351.8095.


Characterization data for the compounds 2:

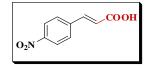
(E)-Cinnamic acid (2a):


Yield 90%; ¹H NMR (400 MHz, CDCl₃): δ 11.00 (brs, 1H), 7.60-7.56 (m, 2H), 7.45 (d, 1H, J = 16 Hz); 7.44-7.40 (m, 3H), 6.42 (d, 1H, J = 16.1 Hz); ¹³C NMR (100 MHz, CDCl₃): δ 172.5, 148.3, 135.8, 131.5, 129.1, 128.9, 118.5; HRMS (EI) calcd for C₉H₈O₂: 148.0524; found: 148.0520.

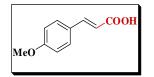
(E)-3-(4-bromophenyl)-acrylic acid (2b):


Yield 92%; ¹H NMR (400 MHz, CDCl₃): δ 11.52 (brs, 1H), 7.54 (d, 2H, *J* = 8.5 Hz), 7.48 (d, 1H, *J* = 16 Hz), 7.38 (d, 2H, *J* = 8.5 Hz), 6.43 (d, 1H, *J* = 16.1 Hz); ¹³C NMR (100 MHz, CDCl₃): δ 172.5, 143.6, 133.5, 132.2, 129.6, 124.6, 118.2; HRMS(EI) calcd for C₉H₇BrO₂: 225.9629; found: 225.9631.

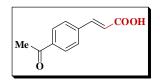
(*E*)-3-(4-chlorophenyl)-acrylic acid (2c):


Yield 92%; ¹H NMR (400 MHz, CDCl₃): δ 11.55 (brs, 1H), 7.49 (d, 1H, J = 16 Hz), 7.46 (d, 2H, J = 6.6 Hz), 7.29 (d, 2H, J = 6.6 Hz), 6.43 (d, 1H, J = 16.0 Hz); ¹³C NMR (100 MHz, CDCl₃): δ 171.9, 143.5, 136.5, 133.0, 129.2, 128.9, 118.7; HRMS (EI) calcd for C₉H₇ClO₂: 196.0291; found: 196.0295.

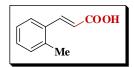
(E)-3-(2-nitrophenyl)-acrylic acid (2d):


Yield 95%; ¹H NMR (400 MHz, CDCl₃): δ 11.52 (brs, 1H), 8.32 (d, 1H, *J* = 15.9 Hz), 8.06 (d, 1H, *J* = 8.4 Hz), 7.69-7.66 (m, 2H), 7.58-7.52 (m, 1H), 6.35 (d, 1H, *J* = 15.9 Hz); ¹³C NMR (100 MHz, CDCl₃): δ 172.2, 148.1, 140.3, 133.5, 130.5, 130.4, 130.1, 125.2, 122.9; HRMS (EI) calcd for C₉H₇NO₄: 193.0375; found: 193.0378.

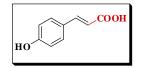
(E)-3-(4-nitrophenyl)-acrylic acid (2e):


Yield 96%; ¹H NMR (400 MHz, CDCl₃): δ 11.54 (brs, 1H), 8.26 (d, 2H, J = 8.7 Hz), 7.69 (d, 2H, J = 8.7 Hz), 7.64 (d, 1H, J = 16.2 Hz), 6.55 (dd, 1H, J = 16.2 Hz, J = 0.9 Hz); ¹³C NMR (100 MHz, CDCl₃): δ 171.5, 148.8, 142.3, 140.7, 128.8, 124.5, 122.2; HRMS (EI) calcd for C₉H₇NO₄: 193.0375; found: 193.0372.

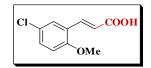
(*E*)-3-(4-methoxyphenyl)-acrylic acid (2f):


Yield 92%; ¹H NMR (400 MHz, CDCl₃): δ 11.57 (brs, 1H), 7.49 (m, 2H), 7.46 (d, 1H, J = 16.0 Hz), 6.94-6.89 (m, 2H), 6.34 (d, 1H, J = 16.0 Hz), 3.86 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 172.9, 161.6, 144.5, 129.7, 127.5, 115.1, 114.6,55.4; HRMS (EI) calcd for C₁₀H₁₀O₃: 178.0630; found: 178.0634.

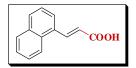
(*E*)-3-(4-acetylphenyl)-acrylic acid (2g):


Yield 96%; ¹H NMR (400 MHz, CDCl₃): δ 11.53 (brs, 1H), 7.89 (d, 2H, J = 8.7 Hz), 7.67 (d, 2H, J = 8.7 Hz), 7.45 (d, 1H, J = 16.2 Hz), 6.33 (d, 1H, J = 16.2 Hz), 2.52 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 197.2, 172.5, 148.8, 143.2, 140.7, 128.7, 124.5, 122.1, 26.6; HRMS (EI) calcd forC₁₁H₁₀O₃: 190.0630; found: 190.0628.

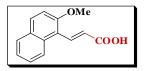
(E)-3-o-tolyl-acrylic acid (2h):


Yield 94%; ¹H NMR (400 MHz, CDCl₃): δ 11.55 (brs, 1H), 7.98 (d, 1H, *J* = 16.0 Hz), 7.56-7.51 (m, 1H), 7.28-7.20 (m, 3H), 6.15 (d, 1H, *J* = 16.0 Hz), 2.45 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 172.5, 142.6, 137.6, 133.5, 130.9, 130.3, 126.5, 126.3, 118.7, 19.7; HRMS (EI) calcd for C₁₀H₁₀O₂: 162.0681; found: 162.0685.

(E)-3-(4-hydroxyphenyl)-acrylic acid (2i):

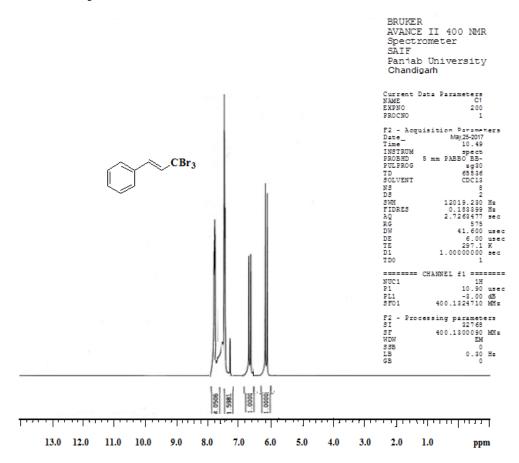

Yield 90%; ¹H NMR (400 MHz, CDCl₃): δ 11.54 (brs, 1H), 9.40 (brs, 1H), 7.66 (d, 1H, J = 16.0 Hz),7.48 (m, 2H), 6.93-6.89 (m, 2H), 6.30 (d, 1H, J = 16.0 Hz);¹³C NMR (100 MHz, CDCl₃): δ 172.6, 161.5, 144.5, 129.7, 127.2, 115.3, 114.4; HRMS (EI) calcd for C₉H₈O₃: 164.0473; found: 164.0468.

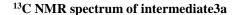
(*E*)-3-(5-chloro-2-methoxyphenyl)-acrylic acid (2j):

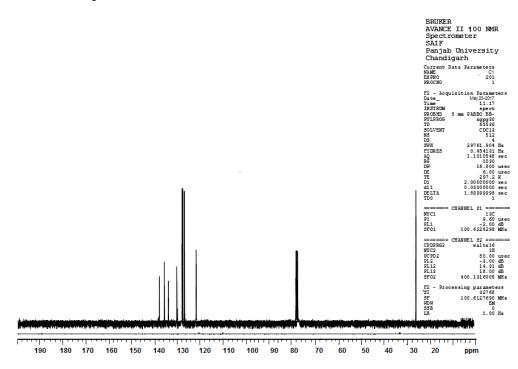

Yield 96%; ¹H NMR (400 MHz, CDCl₃): δ 11.57 (brs, 1H), 7.94 (d, 1H, *J* = 16.2 Hz), 7.46 (d, 1H, *J* = 2.6 Hz), 7.31 (dd, 1H, *J* = 8.8, *J* = 2.6 Hz), 6.85 (d, 1H, *J* = 8.8 Hz), 6.12 (d, 1H, *J* = 16.2 Hz), 3.88 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 172.3, 156.6, 138.4, 130.9, 128.0, 125.5, 124.6, 118.9, 112.5, 55.6; HRMS (EI) calcd for C₁₀H₉ClO₃: 212.0240; found: 212.0241.

(E)-3-(naphthalen-yl)-acrylic acid (2k):

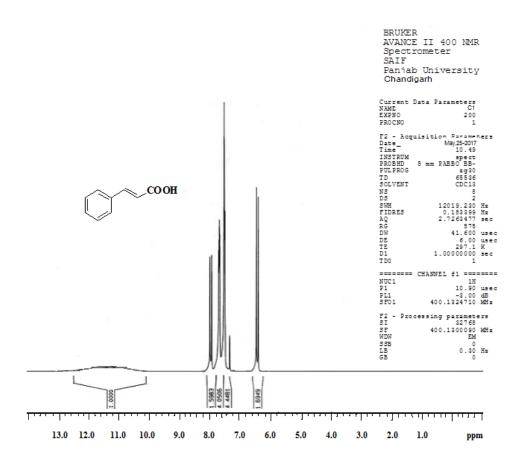
Yield 94%; ¹H NMR (400 MHz, CDCl₃): δ 11.52 (brs, 1H), 8.20 (d, 1H, *J* = 7.5 Hz), 7.91-7.83 (m, 2H), 7.81 (d, 1H, *J* = 15.8 Hz), 7.77 (d, 1H, *J* = 7.2 Hz), 7.58-7.46 (m, 3H), 6.33 (d, 1H, *J* = 15.8 Hz); ¹³C NMR (100 MHz, CDCl₃): δ 171.3, 142.2, 133.6, 131.7, 131.4, 130.5, 128.8, 127.0, 126.2, 125.5, 125.1, 123.5, 120.5; HRMS (EI) calcd for C₁₃H₁₀O₂: 198.0681; found: 198.0683.

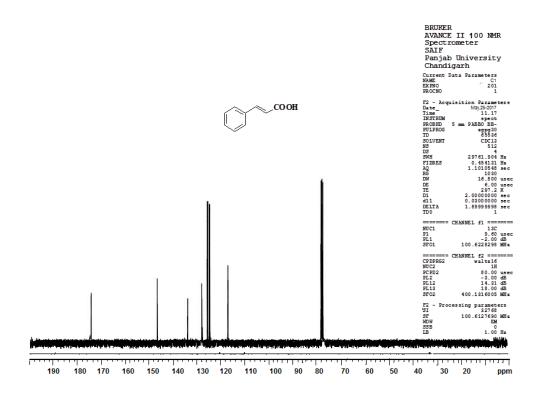

(*E*)-3-(2-methoxynaphthalen-yl)-acrylic acid (2l):

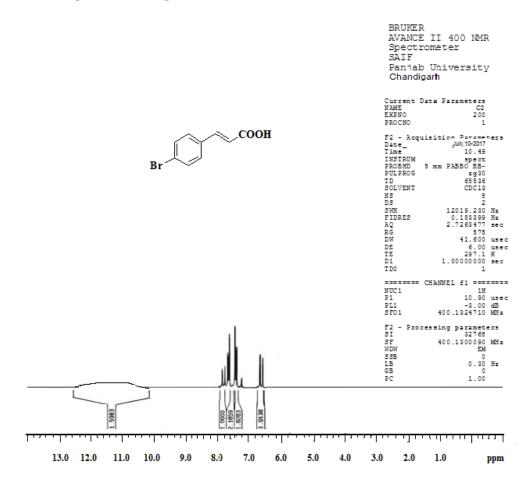


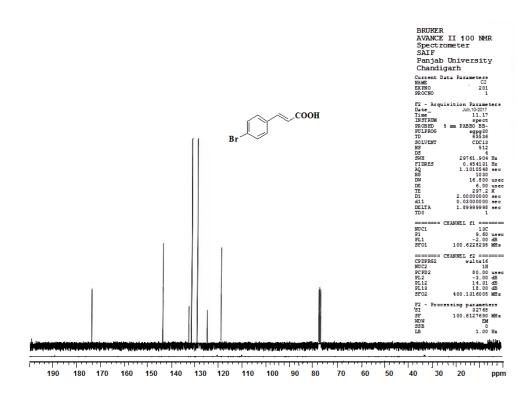

Yield 93%; ¹H NMR (400 MHz, CDCl₃): δ 11.54 (brs, 1H), 8.21 (d, 1H, *J* = 8.5 Hz), 7.86 (d, 1H, *J* = 9.1 Hz), 7.80 (dd, 1H, *J* = 8.1, *J* = 0.6 Hz), 7.77 (d, 1H, *J* = 16.2 Hz), 7.55-7.49 (m, 1H), 7.42-7.37 (m, 1H), 7.32 (d, 1H, *J* = 9.1 Hz), 6.43 (d, 1H, *J* = 16.2 Hz), 4.01 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 172.2, 168.2, 156.9, 137.7, 132.5, 131.7, 128.8, 128.3, 127.3, 123.8, 122.9, 122.4, 116.6, 112.5, 55.8; HRMS (EI) calcd C₁₄H₁₂O₃: 228.0786; found: 228.0788.

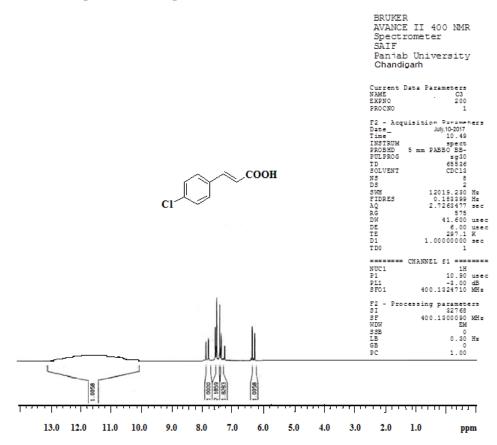
Copies of ¹H and ¹³C NMR spectra:

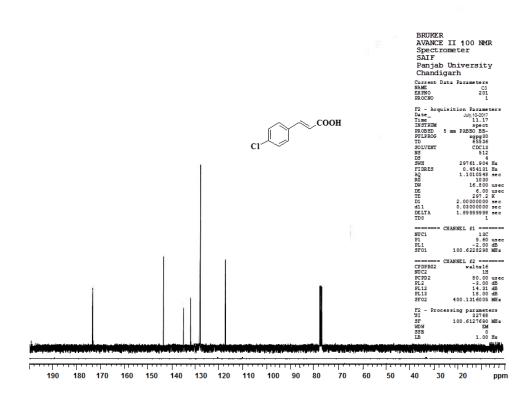

¹H NMR spectrum of intermediate 3a

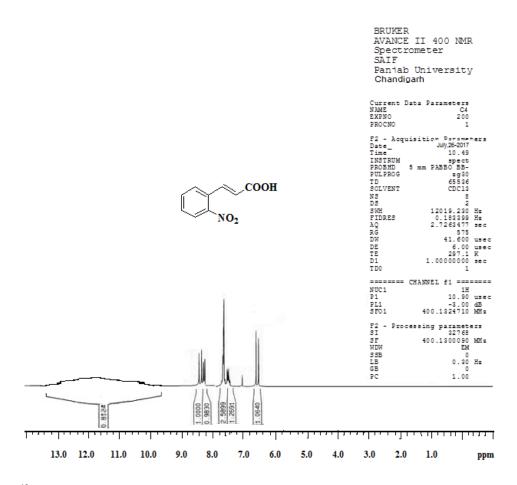


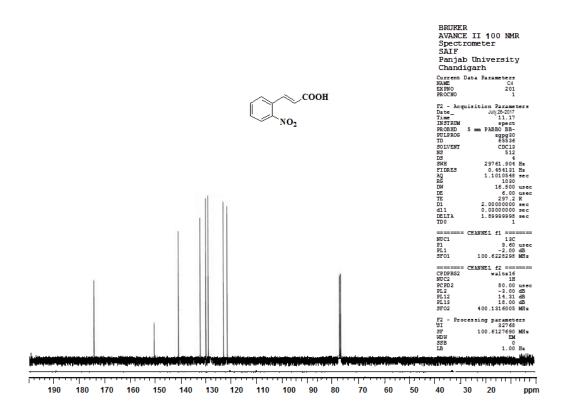

¹H NMR spectrum of compound 2a

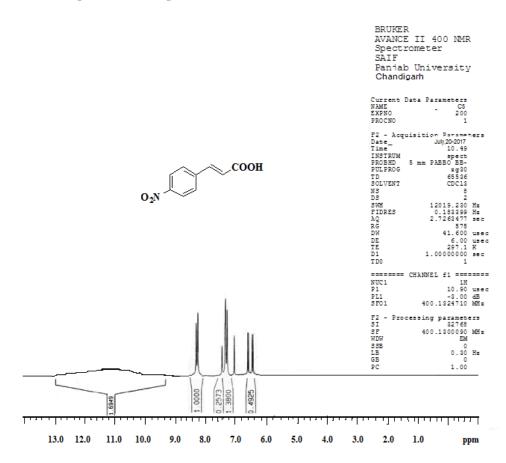

¹³C NMR spectrum of compound 2a

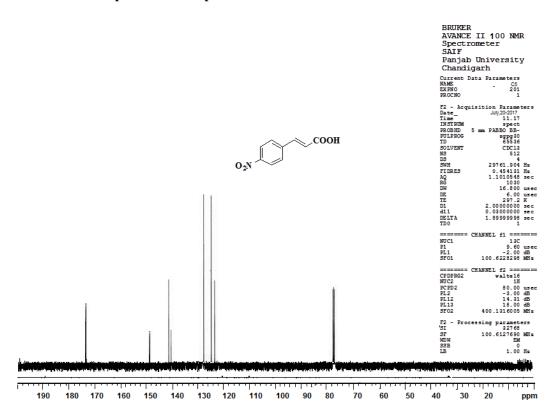

¹H NMR spectrum of compound 2b

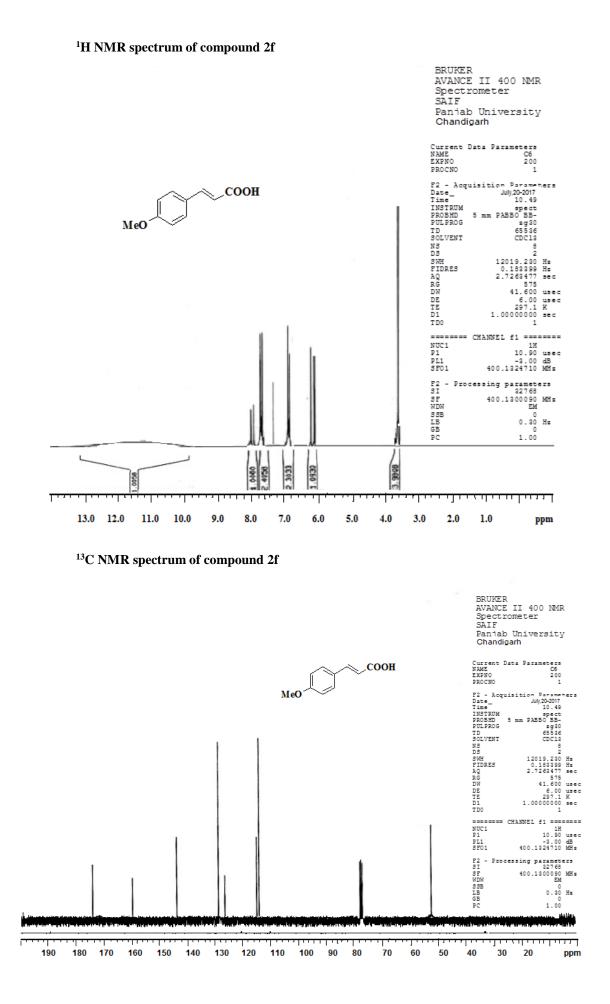

¹³C NMR spectrum of compound 2b


¹H NMR spectrum of compound 2c

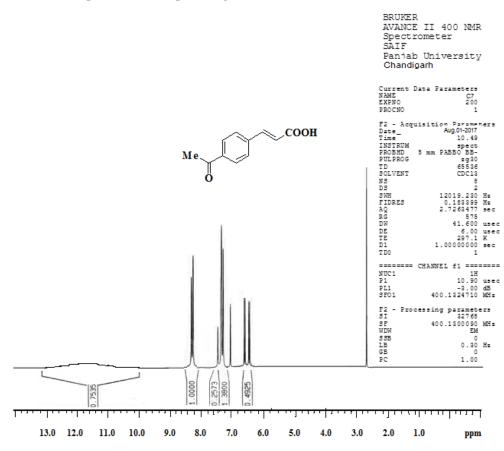

¹³C NMR spectrum of compound 2c

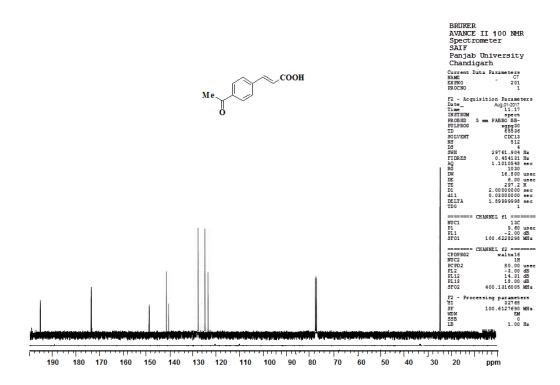

¹H NMR spectrum of compound 2d


¹³C NMR spectrum of compound 2d

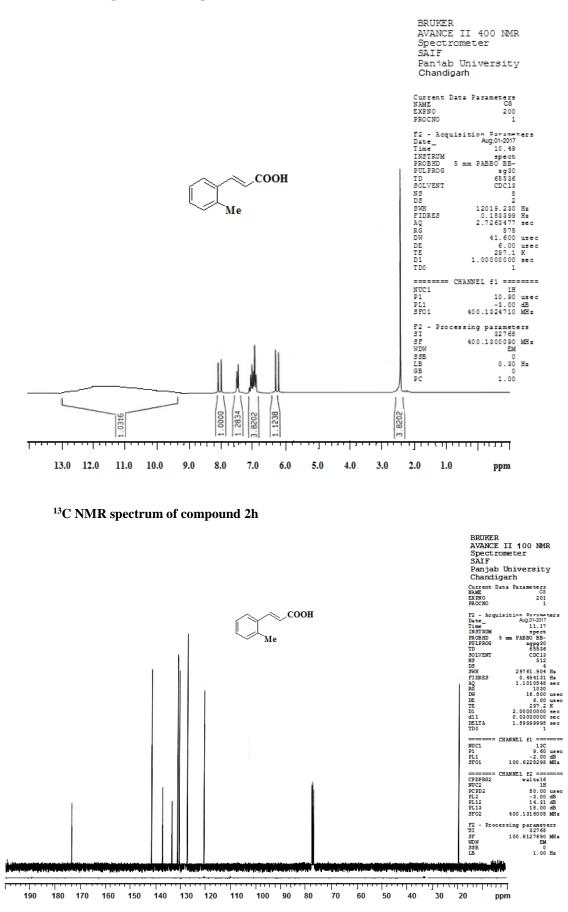


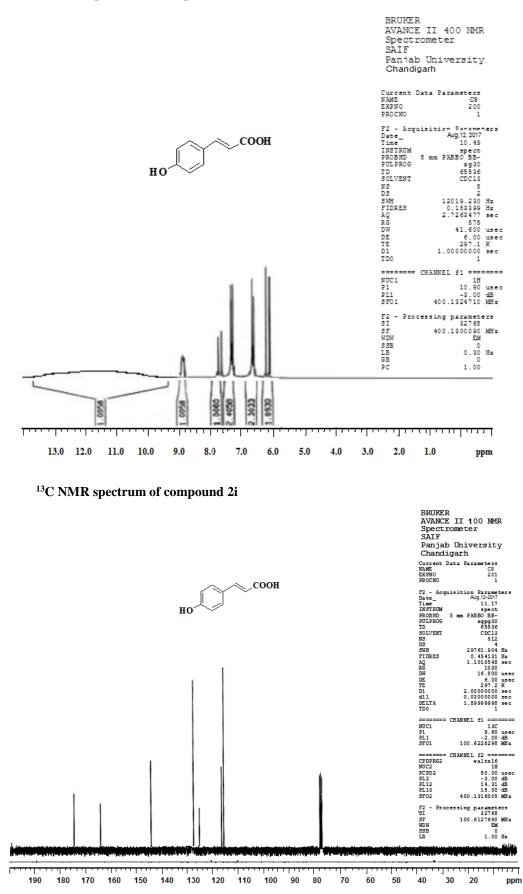
¹H NMR spectrum of compound 2e

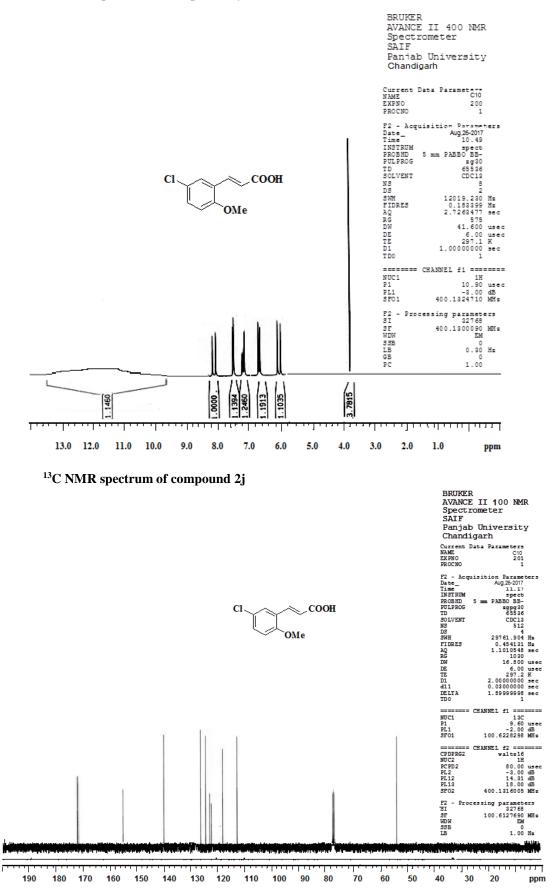

¹³C NMR spectrum of compound 2e

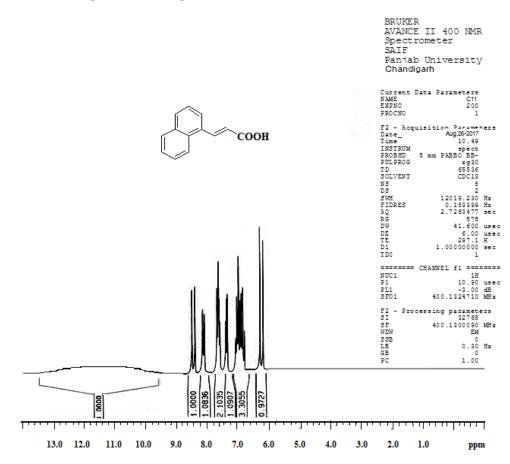


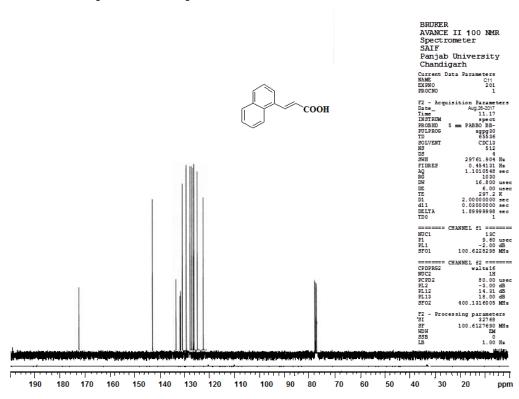
S13

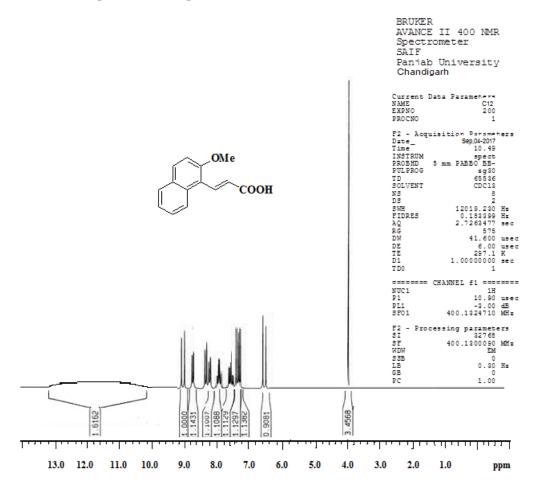

¹H NMR spectrum of compound 2g

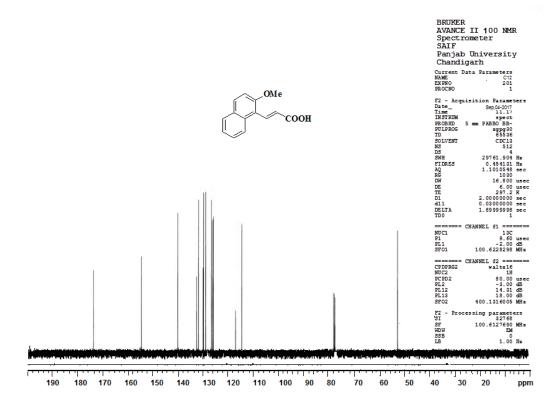

¹³C NMR spectrum of compound 2g


¹H NMR spectrum of compound 2h


¹H NMR spectrum of compound 2i


¹H NMR spectrum of compound 2j


¹H NMR spectrum of compound 2k


¹³C NMR spectrum of compound 2k

¹H NMR spectrum of compound 2l

¹³C NMR spectrum of compound 2l

