Supporting Information

A highly selective and sensitive chemosensor for L-tryptophan by employing Schiff based Cu(II) complex

Anoop Kumar Saini,^a Mohit Saraf,^b Pratibha Kumari,^c and Shaikh M. Mobin*^{a,b,c}

^aDiscipline of Chemistry, ^bDiscipline of Metallurgy Engineering and Materials Science, ^cDiscipline of Biosciences and Bio-Medical Engineering, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India

*Email: xray@iiti.ac.in

Tel: +91 731 2438 752

Bond Distances	1
Cu(1)-O(1)	1.895(5)
Cu(1)-O(2)	1.909(5)
Cu(1)-N(1)	1.958(6)
Cu(1)-N(3)	1.962(6)
Cu(2)-O(3)#1	1.901(4)
Cu(2)-O(3)	1.901(4)
Cu(2)-N(5)	1.958(5)
Cu(2)-N(5)#1	1.958(5)

 Table S1. Selected bond lengths (Å) and bond angles (°) of 1.

Bond angles	1
O(1)-Cu(1)-O(2)	167.4(3)
O(1)-Cu(1)-N(1)	91.7(2)
O(2)-Cu(1)-N(1)	90.7(2)
O(1)-Cu(1)-N(3)	90.7(2)
N(1)-Cu(1)-N(3)	166.7(3)
O(3)#1-Cu(2)-O(3)	162.4(3)
O(3)#1-Cu(2)-N(5)	91.1(2)
O(3)-Cu(2)-N(5)	90.91(19)
O(3)#1-Cu(2)-N(5)#1	90.91(19)
O(3)-Cu(2)-N(5)#1	91.1(2)
N(5)-Cu(2)-N(5)#1	166.5(3)

Table S2. Hydrogen bonding of 1 [Å and (°)].

	D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
		1			
1	C(5)-H(5)O(3)#(1)	0.950(.000)	2.665(.000)	3.384(.000)	132.85(0.00)
Eq	uivalent positions:				
(1)	x,+y-1,+z				

Table S3.	Electronic	properties	of 1 .
Table S3.	Electronic	properties	of 1 .

Compound	$\lambda_{(S0 \rightarrow S1)} (nm)$	$\epsilon (M^{-1} \text{ cm}^{-1})$	
	307	4.6×10^{3}	
1	388	2.1×10^{3}	
	405	2.0×10^{3}	

Table S4 Comparison table of some previously reported L-Trp sensors.

Electrode Material	LOD (nM)	Sensitivity (µA µM ⁻¹ cm ⁻²)	Oxidation Potential (V)	References
Multiwall carbon nanotube/Mg-Al layered double hydroxide	6.8	-	0.639	<i>J. Electroanal. Chem.</i> , 2013, 704 , 220-226.
Flower-like structured nanocomposite consisting of reduced graphene oxide and SnO_2	40	37.3	0.76	Sens. Actuator B- Chem., 2017, 239 1221-1230.
Silver nanoparticle-graphene nanocomposite	2	-	0.8	<i>Biosens. Bioelectron.,</i> 2013, 42 , 198-206.
Electrospun tricobalt tetroxide nanoparticles decorated carbon nanofibers	200	-	0.85	Sens. Actuator B-Chem., 2017, 241 , 601-606.
Gold nanoparticles/poly(alizarin red S)	6.7	-	~0.7	J. Solid State Electrochem., 2013, 17, 2623-2631.
Reduced graphene oxide polymer nanocomposite	316	0.0451	0.728	Sens. Actuator B-Chem., 2016, 233, 445-453.
Silver nanoparticles/metal-organic framework composite	140	-	0.989	<i>RSC Adv.</i> , 2016, 6 , 13742-13748.
β-Cyclodextrin/Fe ₃ O ₄ hybrid magnetic nano-composite	500	-	0.8	Sens. Actuator B-Chem., 2012, 163, 171-178.
Graphene oxide hybrid	8	-	0.7	Analyst 2015, 140, 5295-5300.
1	185	3.156	0.32	Present Work

Table S5. Real sample analysis performed for -GCE (n =3)

Real Sample	Added (µM)	Found (µM)	Recovery (%)
	2.0	1.92	96
	4.0	3.98	99.5
Milk	6.0	6.12	102
	8.0	8.34	104
	10	10.6	106

Compound	Protein (PDB	Binding	Inhibition	Interacting residues
	Id)	energy	constant	
		(Kcal/Mol)		
1	Xylanases from B. Circulans (1XNB)	-9.07	224.13nM	Chain A: Try5, Gln7, Asn8, Trp9 , Tyr69, Trp71 , Pro116, Ser117, Gly120, Asp121, Tyr166
1	Polymerase PA_C-PB_N complex from an avian influenza H5N1 virus (3CM8)	-9.12	207.63nM	Chain A: Arg279, Asn466, Lys574, Trp577 , Ser648, Leu649, Ala651, Ser652, Pro653
1	Ascorbate oxidase from Zucchini (1AOZ)	-8.17	1.03 μM	Chain A: Ile161, Arg162, Trp163 , Arg285, Gln 353, Val355,Val360, Trp362 , Met 437, Glu443, His512
1	Soybean beta- amylase (1BYB)	-7.52	3.06 µM	Chain A: Val99, Gly100, Tyr192, Gln194, Trp198 , Phe200, Trp301 , Gln351, Leu383

Table S6. Molecular docking of 1 with xylanases from *B. Circulans*, RNA polymerase PAsubunit of avian influenza H5N1 virus, ascorbate oxidase and soybean beta-amylase.

Scheme S1. Synthesis of ligand HL and HL-1.

Fig. S1. CV profiles of *1–GCE* at (a) different mass loadings and (b) different pH.

Fig. S2. ESI–MS spectrum of 1.

Fig. S3. N–H··· π interactions in 1 forming 1D–polymeric chain (black dotted line), where D represent the dummy atom.

Fig. S4. Absorption spectrum of 1 in CHCl₃ (c = 1.0×10^{-5} M).

Fig. S5. Bensei-Hildbrand plot (B-H plot) obtained from absorption (at 430 nm wavelength) studies. The binding affinity is $K_a = 1.88 \times 10^5 \text{ M}^{-1}$

Fig. S6. Calibration curve for the determination of L-Trp, at λ_{max} = 430 nm (LOD = 124 nM).

Fig. S7. SEM image of *1-GCE*.

Fig. S8. Operational mechanism of the proposed sensor.

Fig. S9. Selectivity study of *1-GCE* in the determination of L-Trp.

Fig. S10. CV responses (20 cycles) for *1–GCE* recorded up to three weeks.

Fig. S11. CV response (50 cycles) for *1–GCE* recorded after three weeks.

Fig. S12. ESI–MS spectrum of HL-1 (M+Na).

Fig. S13. (a) UV/vis absorption titration spectra of HL-1 ($c = 1.0 \times 10^{-5}$ M) in aq. ACN (ACN/H₂O = 7:3 v/v, 10 µM phosphate buffer, pH = 7.0) with L–Trp ($c = 1.0 \times 10^{-4}$ M). (b) CV profiles of *2-GCE* in the presence and absence of L-Trp.

Fig. S14. Molecular docking of 1 with various proteins. Protein represented as ribbon (β – sheet: purple, helix: red and coil: grey) interacting residues within 5Å represented as stick. 1 is shown as stick (yellow colour). π – π stacking interaction are shown as dotted line (purple) between Trp and 1. (a) RNA polymerase subunit of influenza virus H5N1 (PDB: 3CM8), **Trp755** residue form π – π stacking integration with naphthyl ring of 1 (4.379Å, 4.321Å, 4.291Å, 4.090Å). (b) soybean beta-amylase (PDB:1BYB), **Trp301** residue show π – π stacking integration with 1 (3.653Å, 43.651Å). (c) ascorbate oxidase (PDB:1AOZ), Indole ring of **Trp163** form π – π stacking interaction with mesitylene ring of 1 having bond distance 3.649Å, 3.910Å, 4.051Å.