Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Electronic Supplementary Information

Effect of Structural Manipulation in Hetero-tri-aryl Amine Donor Based

D-A'-π-A sensitizers in Dye Sensitized Solar Cells

Dinesh S. Patil,^a Keval K. Sonigara,^b Manoj M. Jadhav, ^a Kiran C. Avhad, ^a Suryapratap

Sharma, ^a Saurabh S. Soni,^{b,*} Nagaiyan Sekar^{a,*}

^a Department of Dyestuff Technology, Institute of Chemical Technology (ICT), Mumbai-400 021, Maharashtra, INDIA

^b Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar-388 120, Gujarat, INDIA

Table of Contents

Sr. No.	Contents					
					1	Figure S1: HOMO-LUMO energy diagram by DFT
2	Figure S2: IPCE characteristics of DP devices	S3				
3	Figure S3: Optimized geometry of the DP1, DP2, DP3 and DP4 by DFT	S4				
4	Figure S4: ¹ H NMR spectrum of compound 1	S5				
5	Figure S5: ¹³ C NMR spectrum of compound 1	S5				
6	Figure S6: ¹ H NMR spectrum of compound 2a	S6				
7	Figure S7: ¹³ C NMR spectrum of compound 2a	S6				
8	Figure S8: ¹ H NMR spectrum of compound 2b	S7				
9	Figure S9: ¹³ C NMR spectrum of compound 2b	S7				
10	Figure S10: ¹ H NMR spectrum of compound 3a	S 8				
11	Figure S11: ¹ H NMR spectrum of compound 3b	S 8				
12	Figure S12: ¹³ C NMR spectrum of compound 3b	S9				
13	Figure S13: ¹ H NMR spectrum of compound 4a	S9				
14	Figure S14: ¹³ C NMR spectrum of compound 4a	S10				
15	Figure S15: ¹ H NMR spectrum of compound 4b	S10				
16	Figure S16: ¹³ C NMR spectrum of compound 4b	S11				
17	Figure S17: ¹ H NMR spectrum of sensitizer DP1	S11				
18	Figure S18: ¹³ C NMR spectrum of sensitizer DP1	S12				
19	Figure S19: ¹ H NMR spectrum of sensitizer DP2	S12				
20	Figure S20: ¹³ C NMR spectrum of sensitizer DP2	S13				
21	Figure S21: ¹ H NMR spectrum of sensitizer DP3	S13				
22	Figure S22: ¹³ C NMR spectrum of sensitizer DP3	S14				
23	Figure S23: ¹ H NMR spectrum of sensitizer DP4	S14				
24	Figure S24: ¹³ C NMR spectrum of sensitizer DP4	S15				
75	Table S1: Electrochemical characterization of DP sensitizers by DFT	S16				
	calculations.					
26	Table S2: Electronic transition data obtained by TD-B3LYP/6-	S16				
	311++G(d,p) level for each molecule in the DMF solution					

Figure S1. HOMO LUMO energy representation of the all sensitizer, parameters obtained at the B3LYP/6-31G(d) level in vacuum.

Figure S2. IPCE characteristics of DP devices

Figure S3. The optimized geometries of the DP1, DP2, DP3 and DP4 sensitizers, obtained at the B3LYP/6-31G(d) level in vacuum.

Figure S4: ¹H NMR spectrum of compound 1

Figure S5: ¹³C NMR spectrum of compound 1

Figure S6: ¹H NMR spectrum of compound 2a

Figure S7: ¹³C NMR spectrum of compound 2a

Figure S8: ¹H NMR spectrum of compound 2b

Figure S9: ¹³C NMR spectrum of compound 2b

Figure S10: ¹H NMR spectrum of compound 3a

Figure S11: ¹H NMR spectrum of compound 3b

Figure S12: ¹³C NMR spectrum of compound 3b

Figure S13: ¹H NMR spectrum of compound 4a

Figure S14: ¹³C NMR spectrum of compound 4a

Figure S15: ¹H NMR spectrum of compound 4b

Figure S16: ¹³C NMR spectrum of compound 4b

Figure S17: ¹H NMR spectrum of sensitizer DP1

Figure S18: ¹³C NMR spectrum of sensitizer DP1

Figure S19: ¹H NMR spectrum of sensitizer DP2

Figure S20: ¹³C NMR spectrum of sensitizer DP2

Figure S21: ¹H NMR spectrum of sensitizer DP3

Figure S22: ¹³C NMR spectrum of sensitizer DP3

Figure S23: ¹H NMR spectrum of sensitizer DP4

Figure S24: ¹³C NMR spectrum of sensitizer DP4

Sensitizer	НОМО	LUMO	LUMO+1	HL-gap	HL+1-gap
	(eV)	(eV)	(eV)		
DP1	-5.498	-3.0626	-1.958	2.435	3.539
DP2	-5.297	-2.9211	-1.866	2.372	3.426
DP3	-5.425	-3.058	-2.096	2.367	3.328
DP4	-5.211	-2.945	-2.053	2.266	3.158

Table S1. Electrochemical characterization of DP sensitizers by DFT calculations.

Table S2 Electronic transition data obtained by TD-B3LYP/6-311++G(d,p) level for each molecule in the DMF solution.

Sensi tizer s	State s	λ _{max} (nm)	f	LHE	Excite d energ y (eV)	Transition character
DP1	S_1 S_2 S_3	573 412 383	1.323 0.503 0.073	0.9525 0.6859 0.1547	2.16 3.01 3.24	H → L (99.56%) H-1 → L (84.53%), H → L+1 (15.13%) H-1 → L (14.66%) H → L+1 (80.46%)
DP2	S_1 S_2	594 452	1.644 0.441	0.9773 0.6377	2.08 2.74	H → L (99.34%) H-1 → L (91.32%), H → L (8.06%) H-2 → L (89.48%), H-2 → L+1 (7.54%), H-2 →
DP3	S_3 S_1 S_2 S_2	431 575 406	0.001 1.658 0.156	0.0023 0.9780 0.3017 0.0262	2.87 2.15 3.05 2.28	L+2 (2.79%). H → L (99.97%) H-1 → L (26.79%), H → L+1 (71.62%) H 1 → L (71.40%) H → L+1 (24.72%)
DP4	$ \begin{array}{c} \mathbf{S}_3\\ \mathbf{S}_1\\ \mathbf{S}_2\\ \mathbf{S}_3 \end{array} $	610 441 422	0.010 1.808 0.312 0.001	0.0362 0.9844 0.5124 0.0023	3.38 2.03 2.81 2.93	$\begin{array}{l} \text{H-1} \rightarrow \text{L} \ (71.49\%), \ \text{H} \rightarrow \text{L+1} \ (24.72\%). \\ \text{H} \rightarrow \text{L} \ (99.79\%) \\ \text{H-1} \rightarrow \text{L} \ (28.27\%), \ \text{H} \rightarrow \text{L+1} \ (70.47\%) \\ \text{H-2} \rightarrow \text{L} \ (87.51\%), \ \text{H-2} \rightarrow \text{L+1} \ (9.31\%). \end{array}$