Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Supporting Information

Eight homodinuclear lanthanide complexes prepared from a quinoline based ligand: structural diversity and singlemolecule magnetism behaviour

Yangdan Pan,^a Haifeng Zhang,^a Yaru Qin,^a Yu Ge,^a Yanfeng Cui,^a Yahong Li,*^a Wei Liu,*^a and Yaping Dong^b

^a College of Chemistry, Chemical Engineering and Materials Science, Soochow University,
 Suzhou 215123, China. E-mail: liyahong@suda.edu.cn, weiliu@suda.edu.cn
 ^b Key Laboratory of Salt Lake Resources and Chemistry, Qinghai Institute of Salt Lakes, Chinese
 Academy of Sciences, Xining 810008, P. R. China

1.	¹ H and ¹³ C NMR spectra of the HL ligand	2
2.	Selected bond lengths and angles of 1-8	3
3.	IR spectra of the HL ligand and Complexes 1-8	8
4.	XRD patterns of complexes 1-8	3
5.	The structures of complexes 3 , 5 , 7 and 8 1	7
6.	M-X bond lengths of complexes 1-8	1
7.	Magnetic properties of complexes 6 and 7	2
8.	Frequency dependence of in-phase(a) and out-of-phase(b) ac susceptibility of complex 62.	3
9.	Parameters obtained from fitting the Cole-Cole plots of complex 624	4
10.	Plot of $\ln \tau$ vs 1/T of 6	5
11.	Dy ₂ SMMs reported in the literature	6

Fig. S2 ¹³C NMR (300 MHz) spectrum of HL in DMSO.

2. Selected bond lengths and angles of 1-8

Atom	Atom	Length/Å	Atom	Atom	Atom	Angle/°
Pr1	N1	2.785(3)	04	Pr1	07	68.39(9)
Pr1	N2	2.602(3)	04	Pr1	010	136.70(9)
Pr2	N3	2.785(3)	04	Pr1	Pr2	113.72(7)
Pr2	N4	2.620(3)	06	Pr1	N1	92.70(10)
Pr2	N5	2.976(4)	06	Pr1	N7	152.85(10)
Pr1	N7	2.984(3)	07	Pr1	06	105.00(9)
Pr1	01	2.552(3)	07	Pr1	010	73.30(9)
Pr1	02	2.593(3)	07	Pr1	Pr2	89.34(6)
Pr1	04	2.518(3)	08	Pr1	N1	151.61(8)
Pr1	06	2.695(3)	08	Pr1	N2	125.59(9)
Pr1	07	2.667(2)	08	Pr1	010	64.41(8)
Pr1	08	2.406(2)	08	Pr1	Pr2	36.65(5)
Pr2	08	2.359(2)	010	Pr1	N1	137.92(9)
Pr1	010	2.723(3)	010	Pr1	N7	74.31(9)
Pr2	010	2.722(3)	012	Pr1	010	64.83(8)
Pr2	011	2.548(3)	012	Pr1	Pr2	37.23(5)
Pr1	012	2.384(2)	N3	Pr2	N5	69.62(9)
Pr2	012	2.388(2)	N3	Pr2	Pr1	167.37(6)
Pr2	013	2.745(2)	N4	Pr2	N3	61.16(9)
Pr2	015	2.562(3)	010	Pr2	Pr1	45.74(6)
Pr2	016	2.621(3)	011	Pr2	N3	74.29(9)
Pr2	018	2.606(3)	012	Pr2	Pr1	37.15(5)
Pr1	Pr2	3.8017(4)	013	Pr2	N3	103.95(8)
			016	Pr2	N3	83.39(9)

 $\label{eq:stables} \textbf{Table S1} \ \textbf{Selected Bond distances and bond angles for 1}$

 Table S2 Selected Bond distances and bond angles for 2

Atom	Atom	Length/Å	Atom	Atom	Atom	Angle/°		
Nd01	04	2.424(4)	04	Nd01	06	151.41(15)	_	
Nd01	05	2.421(4)	04	Nd01	07	106.35(15)		
Nd01	O6	2.600(5)	04	Nd01	09	138.98(14)		
Nd01	07	2.587(4)	04	Nd01	011	121.52(14)		
Nd01	09	2.527(4)	04	Nd01	012	62.79(13)		
Nd01	011	2.544(4)	05	Nd01	04	67.79(13)		
Nd01	012	2.611(4)	05	Nd01	06	90.13(14)		
Nd01	014	2.552(4)	05	Nd01	07	77.22(14)		

Nd01	015	2.540(4)	05	Nd01	09	137.10(14)
Nd01	016	2.557(4)	06	Nd01	012	108.27(15)
Nd01	N3	2.953(5)	06	Nd01	N3	70.84(15)
Nd01	N4	2.961(5)	06	Nd01	N4	140.44(16)
Nd02	01	2.547(4)	07	Nd01	N3	97.54(15)
Nd02	02	2.513(4)	07	Nd01	N4	166.56(16)
Nd02	04	2.398(4)	09	Nd01	06	69.62(15)
Nd02	05	2.404(4)	09	Nd01	07	110.78(15)
Nd02	N5	2.965(5)	09	Nd01	N3	25.08(15)
Nd02	N6	2.575(5)	09	Nd01	N4	73.00(14)
Nd02	N7	2.820(5)	011	Nd01	06	73.78(15)
Nd02	N8	2.869(5)	011	Nd01	07	81.32(15)
Nd02	N9	2572(5)	04	Nd02	N10	74.88(15)
Nd02	N10	2.574(5)	05	Nd02	Nd01	35.02(9)
			05	Nd02	01	70.71(13)

Table S3	Selected	Bond	distances	and	bond	angles	for 3
----------	----------	------	-----------	-----	------	--------	-------

Atom	Atom	length	Atom	Atom	Atom	Angle/°
Sm01	02	2.504(4)	N1	Sm1	N3	61.52(14)
Sm01	03	2.513(3)	N1	Sm1	N10	75.04(14)
Sm01	04	2.524(4)	N1	Sm1	Sm2	150.04(10)
Sm01	06	2.505(3)	N2	Sm1	N1	62.54(16)
Sm01	07	2.572(4)	N2	Sm1	N3	83.38(16)
Sm01	08	2.558(4)	N2	Sm1	N4	142.85(17)
Sm01	010	2.547(3)	N2	Sm1	N5	80.47(18)
Sm01	011	2.384(3)	N2	Sm1	N10	103.90(16)
Sm01	012	2.394(3)	N2	Sm1	Sm2	107.57(12)
Sm01	013	2.605(3)	N3	Sm1	N10	126.39(14)
Sm01	N2	2.924(4)	N3	Sm1	Sm2	148.26(10)
Sm01	N4	2.931(4)	N4	Sm1	N1	92.43(16)
Sm02	011	2.382(3)	N4	Sm1	N3	59.92(16)
Sm02	012	2.365(3)	N4	Sm1	N10	94.43(16)
Sm02	014	2.520(3)	N4	Sm1	Sm2	107.07(11)
Sm02	016	2.476(3)	N5	Sm1	N1	120.73(16)
Sm02	N5	2.939(4)	N5	Sm1	N3	70.13(16)
Sm02	N6	2.548(4)	N5	Sm1	N4	91.35(18)
Sm02	N7	2.867(4)	N5	Sm1	N10	162.99(16)
Sm02	N8	2.530(4)	N5	Sm1	Sm2	82.17(12)
Sm02	N9	2.798(4)	N10	Sm1	Sm2	80.84(10)
Sm02	N10	2.537(4)	03	Sm1	N4	69.10(15)

015	Sm2	07	65.85(17)
015	Sm2	N7	98.41(16)
015	Sm2	N6	166.99(17)
014	Sm2	07	107.55(16)

Atom	Atom	Length/Å	Atom	Atom	Atom	Angle/°
Eu1	01	2.500(7)	01	Eu1	03	50.6(2)
Eu1	03	2.521(7)	01	Eu1	04	80.3(2)
Eu1	04	2.531(7)	01	Eu1	07	75.1(2)
Eu1	06	2.499(7)	01	Eu1	010	67.2(2)
Eu1	07	2.529(7)	01	Eu1	017	115.5(2)
Eu1	08	2.493(7)	03	Eu1	04	115.8(2)
Eu1	010	2.557(6)	03	Eu1	07	72.6(2)
Eu1	011	2.350(5)	03	Eu1	010	114.4(2)
Eu1	016	2.349(6)	03	Eu1	017	69.3(2)
Eu1	017	2.635(6)	04	Eu1	010	64.9(2)
Eu2	011	2.425(6)	04	Eu1	017	111.7(2)
Eu2	012	2.406(6)	06	Eu1	07	143.6(2)
Eu2	013	2.453(6)	06	Eu1	010	107.7(2)
Eu2	014	2.570(6)	011	Eu2	014	110.3(2)
Eu2	016	2.333(5)	011	Eu2	N5	136.8(2)
Eu2	N5	2.503(7)	011	Eu2	N6	158.9(2)
Eu2	N6	2.747(7)	011	Eu2	N7	73.0(2)
Eu2	N7	2.540(6)	012	Eu2	013	152.5(2)
Eu1	Eu2	3.856(13)	012	Eu2	014	147.0(2)
			013	Eu2	N5	125.1(2)
			013	Eu2	N6	84.4(2)
			016	Eu2	N6	126.5(2)
			016	Eu2	N7	141.3(2)

Table S5 Selected Bond	listances and bond angles for	5	

Atom	Atom	Length/Å	Atom	Atom	Atom	Angle/°
Tb1	Tb1 ¹	3.7393(10)	01	Tb1	Tb1 ¹	89.98(10)
Tb1	01	2.456(4)	01	Tb1	03	52.22(14)
Tb1	03	2.461(4)	01	Tb1	04	152.39(15)
Tb1	04	2.532(4)	03	Tb1	N4	148.99(14)
Tb1	06	2.466(4)	04	Tb1	Tb1 ¹	73.76(10)
Tb1	07 ¹	2.344(3)	04	Tb1	N1	122.54(14)
Tb1	07	2.317(3)	06	Tb1	N4	25.97(14)

Tb1	O81	2.469(4)	07	Tb1	$Tb1^1$	36.91(8)
Tb1	N1	2.655(5)	071	Tb1	$Tb1^1$	36.41(8)
Tb1	N2	2.445(4)	N2	Tb1	N1	65.77(16)
Tb1	N3	2.885(5)	N2	Tb1	N3	97.02(15)
Tb1	N4	2.915(5)	N2	Tb1	N4	81.64(15)
Tb1 ¹	07	2.344(3)	N3	Tb1	$Tb1^1$	90.71(9)
Tb1 ¹	08	2.469(4)	N3	Tb1	N4	169.58(14)
			N4	Tb1	$Tb1^1$	99.29(11)

¹1-X,1-Y,1-Z

Table S6 Selected Bond distances and bond angles for ${\bf 6}$

Atom	Atom	Length/Å	Atom	Atom	Atom	Angle/°
Dy1	Dy1 ¹	3.7142(3)	01	Dy1	Dy1 ¹	36.86(4)
Dy1	011	2.3270(15)	011	Dy1	Dy1 ¹	36.37(4)
Dy1	01	2.3004(15)	01	Dy1	011	73.23(6)
Dy1	021	2.4503(16)	01	Dy1	021	134.33(6)
Dy1	03	2.4386(17)	021	Dy1	Dy1 ¹	101.26(4)
Dy1	04	2.4416(19)	021	Dy1	07	73.29(6)
Dy1	06	2.4461(18)	021	Dy1	N1	87.10(6)
Dy1	07	2.5148(19)	021	Dy1	N3	107.16(7)
Dy1	N1	2.646(2)	03	Dy1	06	135.78(6)
Dy1	N2	2.428(2)	03	Dy1	07	152.52(6)
Dy1	N3	2.867(2)	04	Dy1	06	137.48(6)
Dy1	N4	2.898(2)	04	Dy1	07	147.36(6)
01	$Dy1^1$	2.3270(15)	N1	Dy1	Dy1 ¹	163.07(4)
02	$Dy1^1$	2.4502(16)	N2	Dy1	021	136.56(6)
			N2	Dy1	Dy1 ¹	114.18(5)

¹1-X,1-Y,1-Z

 Table S7 Selected Bond distances and bond angles for 7

		8				
Atom	Atom	Length/Å	Atom	Atom	Atom	Angle/°
Ho1	Ho1 ¹	3.7026(4)	011	Ho1	Ho1 ¹	101.50(5)
Ho1	011	2.438(2)	011	Ho1	03	73.52(8)
Ho1	021	2.3203(19)	011	Ho1	04	71.55(8)
Ho1	02	2.2866(19)	011	Ho1	N1	86.49(8)
Ho1	03	2.507(2)	02	Ho1	011	134.62(7)
Ho1	04	2.440(2)	02	Ho1	04	112.85(8)
Ho1	06	2.427(2)	021	Ho1	04	121.75(8)
Ho1	07	2.436(2)	03	Ho1	N1	123.33(8)

Ho1	N1	2.634(3)	03	Ho1	N4	163.83(7)
Ho1	N2	2.415(3)	04	Ho1	Ho1 ¹	124.72(6)
Ho1	N3	2.896(3)	06	Ho1	N3	154.87(8)
Ho1	N4	2.854(3)	07	Ho1	04	137.42(8)
01	Ho1 ¹	2.438(2)	N1	Ho1	Ho1 ¹	162.93(6)
02	Ho1 ¹	2.3204(19)	N2	Ho1	07	120.31(8)

¹1-X,1-Y,1-Z

Table S8 Selected Bond distances and bond angles for 8

Atom	Atom	Length/Å	Atom	Atom	Atom	Angle/°
Er1	Er1 ¹	3.6911(6)	01	Er1	Er1 ¹	124.98(12)
Er1	01	2.432(4)	01	Er1	03	51.36(15)
Er1	03	2.492(4)	01	Er1	N1	72.02(16)
Er1	04	2.413(4)	03	Er1	Er1 ¹	73.94(11)
Er1	06	2.412(4)	03	Er1	N1	123.28(15)
Er1	07	2.266(3)	03	Er1	N3	26.02(14)
Er1	07 ¹	2.311(3)	04	Er1	01	137.37(15)
Er1	O81	2.426(3)	04	Er1	03	147.26(13)
Er1	N1	2.615(5)	04	Er1	O81	80.38(14)
Er1	N2	2.404(4)	06	Er1	N3	154.00(13)
Er1	N3	2.896(6)	06	Er1	N4	26.57(12)
Er1	N4	2.838(6)	07	Er1	Er1 ¹	36.66(8)
Er1	Er1 ¹	3.6911(6)	O 8 ¹	Er1	N4	106.48(15)
			N1	Er1	Er1 ¹	162.67(11)

¹1-X,1-Y,1-Z

3. IR spectra of the HL ligand and Complexes 1-8

Fig. S3 The IR spectrum of HL.

Fig. S4 The IR spectrum of complex 1.

Fig. S5 The IR spectrum of complex 2.

Fig. S6 The IR spectrum of complex 3.

Fig. S7 The IR spectrum of complex 4.

Fig. S8 The IR spectrum of complex 5.

Fig. S9 The IR spectrum of complex 6.

Fig. S10 The IR spectrum of complex 7.

Fig. S11 The IR spectrum of complex 8.

4. XRD patterns of complexes 1-8

Fig. S12 XRD patterns of 1.

Fig. S13 XRD patterns of 2.

Fig. S14 XRD patterns of 3.

Fig. S15 XRD patterns of 4.

Fig. S16 XRD patterns of 5.

Fig. S17 XRD patterns of 6.

Fig. S18 XRD patterns of 7.

Fig. S19 XRD patterns of 8.

5. The structure of the other four complexes 3, 5, 7 and 8

Fig. S20 (a) Molecular structure of $[Sm_2L_2(NO_3)_4(CH_3CN)]\cdot CH_3CN$ (3). Hydrogen atoms have been omitted for clarity. (b) Dinuclear core structure of **3**. (c) Coordination polyhedrons of the Sm^{III} ions in **3**.

Fig. S21 (a) Molecular structure of $[Tb_2L_2(NO_3)_4]$ (5). Hydrogen atoms have been omitted for clarity. (b) Dinuclear core structure of 5. (c) Coordination polyhedrons of the Tb^{III} ions in 5.

Fig. S22 (a) Molecular structure of $[Ho_2L_2(NO_3)_4]$ (7). Hydrogen atoms have been omitted for clarity. (b) Dinuclear core structure of 7. (c) Coordination polyhedrons of the Ho^{III} ions in 7.

Fig. S23 (a) Molecular structure of $[Er_2L_2(NO_3)_3]$ (8). Hydrogen atoms have been omitted for clarity. (b) Dinuclear core structure of 8. (c) Coordination polyhedrons of the Er^{III} ions in 8.

6. M-X bond lengths of complexes 1-8

	M-N(py)	M-N=C	M-Oph	M-OCH ₃	M-N(py)	M-N=C	M-Oph	M-OCH ₃
1-Pr	2.785(3)	2.602(3)	2.384(2)/2.388(2) Å	2.745(2)	2.785(3)	2.620(3)	2.406(2)/2.539(2) Å	2.667(2)
2- Nd	2.820(5)	2.572(5)	2.404(4)/2.421(4) Å	2.557(4)	2.869(5)	2.575(5)	2.398(4)/2.424(4) Å	2.611(4)
3-Sm	2.871(5)	2.550(5)	2.365(4)/2.396(4) Å	2.604(5)	2.796(5)	2.535(5)	2.385(4)/2.385(4) Å	2.548(4)
4-Eu	2.914(8)	2.540(6)	2.425(6)/2.350(5) Å	2.557(6)	2.747(7)	2.503(7)	2.333(5)/2.349(6) Å	2.635(6)
5- Tb	2.655(5)	2.445(4)	2.317(3)/2.344(3) Å	2.469(4)	2.655(5)	2.445(4)	2.317(3)/2.344(3) Å	2.469(4)
6- Dy	2.6646(2)	2.428(2)	2.3004(15)/2.327(15)	2.450(16)	2.6646(2)	2.428(2)	2.3004(15)/2.327(15)	2.450(16)
7- Ho	2.634(3)	2.415(3)	2.2866(19)/2.320(19)	2.438(2)	2.634(3)	2.415(3)	2.2866(19)/2.320(19)	2.438(2)
8- Er	2.615(5)	2.404(4)	2.266(3)/2.311(3) Å	2.426(3)	2.615(5)	2.404(4)	2.266(3)/2.311(3) Å	2.426(3)

 Table S9 Bond lengths between metal centers and the coordinated atoms of HL ligands of complexes 1-8

7. Magnetic properties of complexes 6 and 7

Fig. S24 The plot of $1/\chi_m$ versus *T* for **6** and the linear fit of Curie-Weiss law at 1000 Oe field.

Fig. S25 The plot of $1/\chi_m$ versus *T* for **7** and the linear fit of Curie-Weiss law at 1000 Oe field.

 Frequency dependence of in-phase(a) and out-of-phase(b) ac susceptibility of complex 6

(a)

Fig. S26 Frequency dependence of out-of-phase and in-phase ac susceptibility of complex **6**.

9. Parameters obtained from fitting the Cole-Cole plots of complex 6

Fig. S27 Cole-Cole plots measured at 2.0-6.0 K for **6** under a zero-dc field; the solid lines are the best fits to the experimental data.

			p	
Temperature / K	$X_s / cm^3 mol^{-1}K$	$X_T/cm^3mol^{-1}K$	τ/s	α
2	0.794528E+00	0.412323E+01	0.267376E-03	0.197246E+00
2.5	0.848915E+00	0.423759E+01	0.233009E-03	0.173218E+00
3	0.880567E+00	0.415511E+01	0.204413E-03	0.152869E+00
3.5	0.877305E+00	0.398921E+01	0.175215E-03	0.138299E+00
4	0.870698E+00	0.378721E+01	0.147250E-03	0.121929E+00
4.5	0.835641E+00	0.358134E+01	0.120012E-03	0.108843E+00
5	0.757818E+00	0.338197E+01	0.945000E-04	0.996718E-01
5.5	0.625953E+00	0.319693E+01	0.717889E-04	0.951888E-01
6	0.412082E+00	0.302635E+01	0.520990E-04	0.941584E-01

Table S10 Parameters from the fitting of the Cole-Cole plots of 6.

10. Plot of $\ln \tau$ vs 1/T of 6

Fig. S28 $\ln \tau$ versus T⁻¹ plots for 6. The red line represents the fit to the Arrhenius law.

11.Dy₂ SMMs reported in the literature

Complexes	Ligand	configurations	dDyDy	Dy-O-Dy	Magnetic	Ref.
*	-	-	(Å)	bond angle (°)	properties Ueff	
					(K), τ ₀ (s),	
[Dy ₂ L ₂ (NO ₃) ₄]		9, bicapped	3.7226(8)	106.6(3)	$U_{eff} = 14.8$	This
	но	dodecahedron			$\tau_0 = 4.64 \times 10^{-6}$	work
	ÓCH₃	geometry			antiferromagnetic	
$[\mathrm{Dy}_2\mathrm{L}_2(\mathrm{NO}_3)_2(\mathrm{OAc})_4]$	N OH	9, monocapped	3.8454(9)	104.95(11)		1(<i>a</i>)
·2CH ₃ CN		square antiprism			antiferromagnetic	
$[Dy_2(LH)_2(\mu_2-Piv-$		9, distorted	3.671(7)	100.39(7)	$U_{eff} = 40$	1(b)
$\kappa^{2}O,O')_{2}(NO_{3}-$		monocapped			$\tau_0 = 6.5 \times 10^{-5}$	
κ ² O,O') ₂]		square antiprism			antiferromagnetic	
	но					
$[\mathrm{Dy}_2(\mathrm{Mq})_4(\mathrm{NO}_3)_6]$	он	9, distorted	3.914(5)	112.26(1)	$U_{eff} = 40.01$	1 (c)
	N N	trigonal prism			$\tau_0\!=5.44\times 10^{\text{-}6}$	
					antiferromagnetic	
[Dy ₂ (1-tza) ₄ (NO ₃) ₂	HOOC	9, monocapped	4.0054(2)	105.573(63)	$U_{eff} = 41.8$	1(<i>d</i>)
(bipy) ₂]	N ^{-N}	square antiprism			$\tau_0\!=\!\!2.0\!\!\times\!\!10^{-9}$	
	[⊥] _N [/]				ferromagnetic	
		0.1.1.1	2 ((05(2)	102 077(15)	LL CC 50 10	1()
$[Ln_2(Hnms)_2$		9, nuia-noop	3.0083(3)	103.877(15)	Uen=50.12,	1(e)
(NO ₃) ₄] ⁻ MeCN		-like geometry			$t_0 - 1.13 \times 10^{-1}$	
	OCH ₃				untiterromugnetie	
[Ln(L1) ₃ (DMSO)	СООН	9,	3.930(4)	105.5(1)		1(<i>f</i>)
(H ₂ O)] ₂ [Ln(L ₂) ₃	OCH2		4.085(5) Å	114.3(1)	antiferromagnetic	
(DMSO)] _n	СООН					
	V					
	OCH ₃					
$[Dy_2(\mu_2\text{-anthc})_4$		9, distorted	3.9490(2)	105.18(6)	$U_{eff} = 51.2(3)$	1 (g)
$(anthc)_2(L)_2]$		monocapped			$\tau_0 \!= \! 3.2(1) \times 10^{\text{-8}}$	
	ОСОН	square			ferromagnetic	
		antiprism				
$[Dy_2(\mu_2-anthc)_4$		9, distorted	3.9176(4)	106.20(10)	$U_{eff} = 49.4$	1 <i>(g</i>)
$(anthc)_2(L_{)2}]$		monocapped			$\tau_0\!=\!4.6(2)\times 10^{-8}$	
	0 ОН	square			ferromagnetic	
		antiprism				

Table. S11 Some examples of nine-coordinated Dy₂ SMMs bearing [Dy₂O₂] units

[Dy ₂ (µ ₂ -anthc) ₄ (anthc) ₂ (L) ₂]		9, distorted monocapped square antiprism	3.9224(6)	105.18(6)	$U_{eff} = 31.6$ $\tau_0 = 3.4(2) \times 10^{-8}$ ferromagnetic	1 (g)
[Dy ₂ (HL1) ₂ (NO ₃) ₄]	HOOH	9, distorted monocapped square antiprism	3.709	109.83	$U_{eff} = 72.48$ $\tau_0 = 8.504 \times 10^{-8}$ antiferromagnetic	1 (<i>h</i>)
[Dy ₂ (L2) ₂ (NO ₃) ₄]		9, distorted monocapped square antiprism	3.706	109.71	$U_{eff} = 41.55$ $\tau_0 = 8.5 \times 10^{-7}$ antiferromagnetic	1 (<i>h</i>)
[Dy ₂ (HL3) ₂ (NO ₃) ₄]	N N OH	9, distorted monocapped square antiprism	3.719	110.65	$U_{eff} = 6.77$ $\tau_0 = 9.12 \times 10^{-6}$ ferromagnetic	1 (<i>h</i>)
[Dy ₂ (H ₃ L) ₂ (PhCOO) ₄]·4H ₂ O		9, tricapped trigonal prism	3.695	101.78	$U_{eff} = 42.7$ $\tau_0 = 1.37 \times 10^{-7}$ antiferromagnetic	1 (<i>i</i>)
[Dy ₂ (L) ₂ (acac) ₂ (H ₂ O)]·2CH ₂ Cl ₂	OH N OH OH	9, distorted square antiprism	3.84	110.8	$U_{eff 1} = 37$ $\tau_{01} = 4.2 \times 10^{-7}$ $U_{eff 2} = 80$ $\tau_{02} = 8.3 \times 10^{-8}$ ferromagnetic	1 (j)
[Dy ₂ (H ₂ L) ₂ (μ-piv) ₂ (piv) ₂]· ₂ CHCl ₃	HO O	9, distorted monocapped square-antiprism	3.633	103.02	$U_{eff1} = 8.96$ $\tau_{01} = 8.81 \times 10^{-5}$ $U_{eff2} = 35.51$ $\tau_{02} = 1.48 \times 10^{-6}$ antiferromagnetic	1(<i>k</i>)

References

- 1(a). S. Yang, B. Li, Y. J. Qin, L. Liu and Z. L. Chen, Zeits. Anorg. Allgem. Chem., 2016, 642, 521-52.
- 1(b). S. Biswas, S. Das, G. Rogez and V. Chandrasekhar, Eur. J. Inorg. Chem., 2016, 2016, 3322-3329.
- 1(c). F. Yang, Q. Zhou, G. Zeng, G. Li, L. Gao, Z. Shi and S. Feng, Dalton Trans., 2014, 43, 1238.
- 1(*d*). Y. B. Lu, X. M. Jiang, Sh. D. Zhu, Z. Y. Du, C. M. Liu, Y. R. Xie and L. X. Liu, *Inorg. Chem.*, 2016, **55**, 3738-3749.
- 1(e). M. Li, H. P. Wu, Sh. Zhang, L. Sun, H. Sh. Ke, Q. Wei, G. Xie, S. P. Chen and S. L. Gao, *Eur. J. Inorg. Chem.*, 2017, 811–819.
- 1(f). O. Khalfaoui, A. Beghidja, J. Long, A. Boussadia, C. Beghidja, Y. Guari and J. Larionova, *Dalton Trans.*, 2017, **46**, 3943–3952.
- 1(g). Y. Wang, C. Han, Y. Zhang, Q. Liu, C. Liu and S. Yin, Inorg. Chem., 2016, 55, 5578.
- 1(h). Y. Peng, V. Mereacre, A. Baniodeh, Y. Lan, M. Schlageter, G. E. Kostakis and A. K. Powell, *Inorg. Chem.*, 2016, **55**, 68.
- 1(i). H. Ke, S. Zhang, X. Li, Q. Wei, G. Xie, W. Wang and S. Chen, Dalton Trans., 2015, 44, 21025.
- 1(j). P. Lin, W. Sun, M. Yu, G. Li, P. Yan and M. Murugesu, Chem. Commun., 2011, 47, 10993.
- 1(k). P. Bag, C. K. Rastogi, S. Biswas, S. Sivakumar, V. Mereacre and V. Chandrasekhar, *Dalton Trans.*, 2015, 44, 4328.