Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Online Electronic Supporting Information for

Titania nanowires coated PEI/P25 membranes for photocatalytic

and ultrafiltration applications

Rui Jiang ^a, Wei Wen ^{a,b} and Jin-Ming Wu ^{a*}

^a State Key Laboratory of Silicon Materials and School of Materials Science and Engineering,

Zhejiang University, Hangzhou, 310037, P. R. China

^b College of Mechanical and Electrical Engineering, Hainan University, Haikou 570228, P. R.

1.0 0.8 0.6 0.6 0.4 0.2 0.4 0.2 0.4 0.2 0.6 0.4 0.2 0.6 0.4 0.2 0.6 0.2 0.6 0.6 0.2 0.6 0.6 0.2 0.6 0.6 0.2 0.6 0.6 0.2 0.6 0.7 0.6 0.7 0.6 0.7 0.7 0.6 0.70.

China

Fig. S1 Dark adsorption curves of rhodamine B in water in the presence of the PEI/P25 membrane (a), that after precipitations of titanate nanowires (b) and that after surface functionalization with TiO_2 nanowires (c).

Fig. S2 Photodegradation curve (a) and the corresponding fitting result (b) using the pseudo-firstorder reaction of rhodamine B in water in the presence of the PEI/P25/TiO₂ nanowire membrane under the simulated solar light illumination. The light source is a 500 W Xe-lamp. The intensity of UV and visible irradiance reaching the sample was measured to be ca. 5.0 and 100 mW/cm², respectively, using irradiance meters UV-A and FZ-A, Beijing Normal University, China. The light intensity was measured for the wavelength range of 320-400 nm with a peak wavelength of 365 nm for UV light, and 400-1000 nm for visible light.

Fig. S3 Photograph of the PEI/P25 hybrid membrane surface functionalized with TiO₂ nanowires.

Fig. S4 FESEM morphologies of TiO_2 nanowires precipitated on the PEI/P25 membrane, after ultrasonic cleaning for 30 min.

Fig. S5 Photodegradation curves of rhodamine B in water in the presence of the PEI/P25 hybrid membrane surface functionalized with TiO_2 nanowires, after ultrasonic cleaning for 30 min. The photodegradation evaluations were repeated for six cycles.

Fig. S6 Flux value of the surface roughened PEI/P25 membrane.

Membrane	Water flux	BSA	BSA flux	BSA	Water flux	References
	(L m ⁻² h ⁻¹)	concentration	(L m ⁻² h ⁻¹)	Rejection	recovery	
		(g L ⁻¹)		(%)	(%) UV	
PES ^a -TiO ₂	1046 ^h	0.3	260	75	82.3	[1]
PSF ^b -TiO ₂ /HEMA ^c	148.77 ^h	0.1	/	93	83.37	[2]
PVDF ^d -GO/TiO ₂	487.8 ^h	1.0	320	92.5	82.1	[3]
PSF-NRG ^e /TiO ₂	233.7 ^h	0.5	121.9	92.5	92.9	[4]
PVC ^f -TiO ₂	317.84 ⁱ	1.0	220	99.21	94.2	[5]
PVDF-TiO ₂	103.5 ^h	1.0	50	85.6	96.9	[6]
PVDF/rGOg/TiO2	221 ^j	0.5	/	99	94.9	[7]
PEI-TiO ₂	595	1.0	414	93.3	88.3	This work

Table S1 Comparison of the comprehensive performance for TiO₂-containing hybrid polymeric ultrafiltration membranes reported in the literatures.

^a polyethersulfone; ^b polysulfone; ^c 2-hydroxyethylmethacrylate; ^d polyvinylidene fluoride; ^e Ndoped graphene oxide; ^f Polyvinyl chloride; ^g reduced graphene oxide; ^h operational pressure 0.1 MPa; ⁱ operational pressure 0.15 MPa; ^j operational pressure is 3.0 MPa.

References

- S. H. Liu, M. Liu, Z. L. Xu, Y. M. Wei and X. Guo, J. Membrane. Sci., 2017, 528, 303.
- 2 G. L. Zhang, S. F. Lu, L. Zhang, Q. Meng C. Shen and J. W. Zhang, J. Membrane. Sci., 2013, 436, 163.
- Z. W. Xu, T. F. Wu, J, Shi, K. Y. Teng, W. Wang, M. J. Ma, J. Li, X. M. Qian,
 C. Y. Li and J. T. Fan, *J. Membrane. Sci.*, 2016, **520**, 281.
- 4 H. Xu, M. M. Ding, S. Liu, Y. Li, Z. Shen and K. Wang, *Polymer*, 2017, **117**, 198.
- 5 A. Behboundi, Y. Jafarzadeh and R. Yegani, *Chem. Eng. Res. Des.*, 2016, 114, 96.

- 6 M. T. Moghadam, G. Lesage, T. Mohammadi, J. P. Mericq, J. Mendret, M. Heran, C. Faur, S. Brosillon, M. Hemmati and F. Naeimpoor, *J. Appl. Polymer. Sci.*, 2015, **132**, 41731.
- 7 M. Safarpour, A. Khataee and V. Vatanpour, Sep. Purif. Technol., 2015, 140, 32.