Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Manuscript NJ-ART-11-2017-004630: »How zinc ions shift and enhance the nucleotide's fluorescence spectra«

by A. Omerzu and I. Turel

Electronic Supplementary Information

1. Determination of the formation constant K for the Zn(II) – nucleotide complex

For the analysis of our experimental data we have adopted the method described in A. Munoz de la Pena et al., *J. Incl. Phenom.* **15**, 131 (1993) and V. K. Smith et al. *J. Incl. Phenom.* **10**, 471 (1991). For the reaction:

$$NMP + Zn^{2+} \rightleftharpoons NMP^{*}$$

where NMP is a nucleotide and NMP^{*} is a fluorescent nucleotide – Zn complex, the formation constant K is given by

$$K = \frac{\left[NMP^{*}\right]}{\left(\left[NMP\right] - \left[NMP^{*}\right]\right) \cdot \left(\left[Zn^{2+}\right] - \left[NMP^{*}\right]\right)} \approx \frac{\left[NMP^{*}\right]}{\left(\left[NMP\right] - \left[NMP^{*}\right]\right) \cdot \left[Zn^{2+}\right]},$$

since the fixed Zn²⁺ concentration (1mM) is much larger than the nucleotide's concentrations. Rearranging the formula, we obtain a ratio between the concentration of complexed nucleotides and the total concentration of nucleotides:

$$\frac{[NMP^{*}]}{[NMP]} = \frac{K[Zn^{2+}]}{1 + K[Zn^{2+}]} = \frac{1}{1 + 1/K[Zn^{2+}]}.$$

This expression holds for all concentrations of nucleotides providing that [NMP]<<[Zn²⁺]. Now we can write the complex concentrations normalized to the first (the lowest) concentration, which equals the normalized fluorescence intensity, as a linear function of the normalized total nucleotide's concentrations:

$$\frac{\left[NMP^{*}\right]_{N}}{\left[NMP^{*}\right]_{1}} = \frac{I_{N}}{I_{1}} = \frac{1}{1 + 1/K[Zn^{2} +][NMP]_{1}} .$$

By plotting I_N / I_1 versus $[NMP]_N / [NMP]_1$, we can obtain the constant K from a linear fit.

Fig. S1 Fluorescence spectra of four nucleotide – Zn(II) complexes with increasing nucleotide's concentrations between 1×10^{-5} M and 1×10^{-4} M. The concentration of Zn ions was hold constant – 1 mM.

Fig. S2 The normalized fluorescence intensities of four nucleotides – Zn(II) complexes as functions of the normalized total nucleotide's concentrations. The reaction constants K were calculated from the slopes of the linear fits.

2. Absorption Spectra

Fig. S3 Absorption spectra of four DNA nucleotides in 10 mM Tris-HCl buffer pH 9 without (black curves) and with 1 mM ZnCl₂ added (blue curves). The spectra were recorded with HP 8453 UV-Vis spectrophotometer.

Excitation spectra of four DNA nucleotides in 10 mM Tris-HCl buffer, pH 9, without (upper frame) and Fig. S4 with 1 mM ZnCl₂ added (lower frame). The spectra were recorded with Perkin-Elmer LS 55 spectrofluorometer.

2'-deoxyadenosine 5'-monophosphate (dAMP)

4. Time-decay

Samples: Calf Thymus (CT) DNA, 2'-deoxyguanosine 5'-monophosphate (dGMP), 2'-deoxyadenosine 5'monophosphate (dAMP) in 10 mM Tris-HCl buffer pH 9; 1 mM ZnCl₂.

Measurements: Time Correlated Single Photon Counting (TCSPC) with Fluorolog 3 (Horiba Jobin Yvon) spectrofluorometer. Excitation wavelength λ_{ex} = 294 nm; emission wavelength λ_{em} = 400 nm (special thanks to dr. Miroslav Dramičanin, Vinča Institute of Nuclear Sciences, Serbia, for his assistance).

Fig. S5 A fluorescence time-decay of Zn(II) - Calf-Thymus DNA complex. The decay is fitted with a double-exponential function.

Fig. S6 Fluorescence time-decay of Zn(II) - 2'-deoxyguanosine 5'-monophosphate (dGMP) (left) and Zn(II) - 2'-deoxyadenosine 5'-monophosphate (dAMP) (right) complexes.