Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Electronic Supplementary Information(ESI⁺)

Reaction-Based Bi-signaling Chemodosimeter Probe for Selective Detection of Hydrogen Sulfide and Cellular Studies

Uday Narayan Guria, ^a Kalipada Maiti, ^a Syed Samim Ali, ^a Sandip Kumar Samanta, ^a Debasish Mandal, ^b Ripon Sarkar, ^c Pallab Datta, ^cAsim Kumar Ghosh, ^dAjit Kumar Mahapatra*^a

^a Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah-711103, West Bengal, India, Email: <u>akmahapatra@rediffmail.com</u>, Fax: +913326684564

^b School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147 004 Punjab, 486 India.

^c Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, India

^d Bhabha Atomic Research Centre, Trombay. Mumbai-400085, India

Figure S1. ESI-MS mass spectrum of Compound 2

Figure S2. ESI-MS mass spectrum of Compound 3

Figure S3: ¹H NMR of compound Compound 3 inDMSO-d6

Figure S4. ESI-MS mass spectrum of DPQI

Figure S5: ¹H NMR of DPQI in CDCl₃

Figure S6: ¹³C NMR of DPQI

Figure S7.HR-MS (partial) of sample withdrawn from assay system.

Figure S8. Comparative fluorescence spectra of **DPQI** (at 593 nm)(1.0×10^{-5} M) in the presence of tetrabutyl ammonium and sodium salts of different analytes (10.0×10^{-4} M) (CN⁻,F⁻, Cl⁻, Br⁻, I⁻, S₂O₃²⁻, SO₄²⁻, AcO⁻, and H₂PO₄⁻) and Cys, Hcy, GSH in DMSO-H₂O(1:2 V/V; pH 7.4).

Figure S9.Change in fluorescence spectra of **DPQI** (at 593 nm) ($c= 1 \times 10^{-5}$ M) to 100 eqv. addition of H₂S[green bigbar]and 100 eqv. of other analytes[small bars] and to the mixture of 100 eqv. of other analytes 100 eqv. addition of H₂S[big black bars].

Calculation of Detection limit:

The detection limit (DL) of **DPQI** for H_2S were determined from the following equation:

DL = K* Sb1/S

Where K = 2 or 3 (we take 2 in this case); Sb1 is the standard deviation of the blank solution; S is the slope of the calibration curve.

From graph Sb1= 1.08x10⁷, S=18.89. DL= 3.5µM

Figure S10: Calibration curve for Fluorescence titration of DPQI at 593 nm(Ex@500nm) with H_2S .

Figure S11: Job's plot [(a) is by absorbance and (b) is by fluorescence method] of sensor **DPQI** $(1 \times 10^{-5} \text{ M})$ with H₂S $(1 \times 10^{-5} \text{ M})$ in DMSO–H₂O (1:2 v/v; 20 mM, HEPES buffer, pH = 7.4) by UV spectroscopic method, that indicates 1:2 stoichiometry.

Figure S12: (a)Absorption spectra of **DPQI** (1.0 μ M, 20 mM HEPES buffer PH 7.4, DMSO-H₂O; 1:2; v/v) upon gradual addition of Na₂S (0–100 equiv.). (b) (i) Fluorescence color of DPQI and (ii) fluorescence color of DPQI in presence of 100 equiv. of H₂S. (c) Structure of Quinoline-Indole (QI) required for DFT calculation to know the fluorescence behavior of the probe DPQI.

Figure S13: The visible color (top) and fluorescence changes (bottom) of receptor **DPQI** in aq. DMSO (DMSO: $H_2O = 1:2 \text{ v/v}$, 20 mM HEPES buffer, pH = 7.4) upon addition of various analytes.

Kinetic Study:

The solution phase chemodosimetric reactions of **DPQI** in DMSO were followed by measuring the fluorescence spectra after mixing **DPQI** and Na₂S in a cubic 4-sided quartz cell of 3 ml. The reaction was carried out at 35°c under the excess amount of H₂S (25-100 eqv.) (initial concentration [**DQPI**] << [H₂S]) and the reaction was expected to reach 100% conversion. Separate solutions of different concentrations of **DPQI** and Na₂S in DMSO were prepared and mixed to investigate the kinetics. The excitation wavelength was 500 nm and in all cases the concentration was low enough to maintain a UV absorption that was < 0.1. The rate of the reaction was determined by fitting the fluorescence intensities of the samples to the Pseudo-First Order Equation (1):

 $Ln(F_{max} - F_t)/F_{max} = -k/t$ (1)

Where F(t) and F(max) are the fluorescence intensities at the monitoring wavelengths at times t and the maxima values which are the last fluorescence intensities when **DPQI** reached the conversion of 100%. The k/is the apparent rate constant. Figure S14a is the pseudo first order plot of **DPQI** with 100 equiv. of H₂S. The negative slope of the plot shows the apparent rate constant = **0.232 min⁻¹**. The apparent rate constant, k', contains the concentration of H₂S as a constant and is related to the second-order rate constant, k₂ (M⁻¹min⁻¹), by equation (S2):

 $\mathbf{k}' = \mathbf{k}_2[\mathbf{H}_2\mathbf{S}] \tag{S2}$

The second-order rate constant for this reaction is thus the slope of a linear plot of k' Versus the concentration of H₂S (Fig. S15): $k_2 = 775.44 \text{ M}^{-1}\text{min}^{-1}$

Figure S14: (a) Pseudo first-order kinetic plot of reaction of **DPQI** (10 μ M) with H₂S (100 equiv.) in DMSO. Slope = -0.23 min⁻¹. (b) Kinetic plot of **DPQI** with 25 equiv. H₂S, (c) Kinetic plot of **DPQI** with 50 equiv. H₂S(d) Kinetic plot of **DPQI** with 80 equiv. H₂S.

Figure S15: Plot of the observed k versus the concentration of H_2S for the pseudo first-order reaction of **DPQI** (10µM) with varying concentration of H_2S (25-150 eq). Slope = 775.44 M⁻¹min⁻¹.

Figure S16: The energy optimized structures of (a) DPQI and (b) QI-SH.

Figure S17: HOMO-LUMO distribution and energy difference of DPQI and QI-SH.

Table S1. Selected electronic excitation energies (eV), oscillator strengths (f), main configurations, and CI Coefficients of all the complexes. The data were calculated by TDDFT//B3LYP/6-31+G(d,p) based on the optimized ground state geometries

Molecules	Electronic Transition	Excitation Energy ^a	fb	Composition ^c	(composition) %
DPQI	$S_0 \rightarrow S_1$	2.5540 eV 495.45 nm	0.1833	$H \rightarrow L$	93.3
	$S_0 \rightarrow S_2$	2.9837 eV 415.54 nm	0.6022	$H-1 \rightarrow L$	86.1
	$S_0 \rightarrow S_{23}$	4.4035 eV 281.56 nm	0.1559	$H-2 \rightarrow L+2$	53.4
				$H-14 \rightarrow L$	
	$S_0 \rightarrow S_{33}$	4.8286 eV 256.77 nm	0.2141	$H-3 \rightarrow L+2$	68.2
				$H-1 \rightarrow L+3$	
QI-SH	$S_0 \rightarrow S_1$	2.2867 eV 542.20 nm	0.2349	$H \rightarrow L$	96.7

[a] Only selected excited states were considered. The numbers in parentheses are the excitation energy in wavelength. [b] Oscillator strength. [c] H stands for HOMO and L stands for LUMO.

Table S2. Energies of the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO)

Species	E _{HOMO} (a.u)	E _{LUMO} (a.u)	ΔE(a.u)	ΔE(eV)	∆E(kcal/mol)
DPQI	-0.34444	-0.23556	0.10888	2.962799	68.3
QI-SH	-0.04069	0.05442	0.09511	2.588095	59.7

Computational details:

Geometries have been optimized using the B3LYP/6-31+G(d,p) level of theory The geometries are verified as proper minima by frequency calculations. Time-dependent density functional theory calculation has also been performed at the same level of theory. All calculations have been carried out using Gaussian 09 program.

Water specimens: Different water specimens that we have collected from different areas of West Bengal, India, are given below.

Specimen 1: Water of River Ganga (West Bengal, India).

Specimen 2: Tap water of IIEST, Shipur campus (Howrah, West Bengal, India).

Specimen 3: Water of Hooghly River (East Midnapur, West Bengal, India).

Specimen 4: Shalimar hand pump water (Howrah, West Bengal, India).

Figure S18: MTT assay to determine the cytotoxic effect of **DPQI** and Na₂S complex on Vero cell.

Figure S19: HR-MS of DPQI treated with 0.5 equiv. of H₂S.

Figure 20: HR-MS of DPQI treated with excess of H_2S