Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Supplementary Information

Improvement of Photocatalytic Activity of Surfactant Modified

In₂O₃ towards Environmental Remediation

Debasis Sariket^a, Sanjib Shyamal^a, Paramita Hajra^a, Harahari Mandal^a, Aparajita Bera^a,

Arjun Maity^{b,c} and Chinmoy Bhattacharya^{a*}

^a Department of Chemistry, Indian Institute of Engineering Science & Technology,(IIEST), Shibpur, Howrah – 711103, West Bengal, INDIA

^bDST/CSIR National Centre for Nanostructured Materials, Council for Scientific and Industrial Research, Pretoria-0001, South Africa

^cDepartment of Applied Chemistry, University of Johannesburg, South Africa

* Email: cbhattacharya.besus@gmail.com

Fig S1(a, b) :Linear sweep voltammograms of pure and 0.01 M TX-100 modified In_2O_3 films for (a) SO_3^{2-} oxidation in presence of 0.1M SO_4^{2-} and (b) water oxidation in presence of 0.1M SO_4^{2-} solution under Visible light illumination.

Fig S2: Comparative Action spectra of pure and Tx-100 modified In_2O_3 thin film. Electrolyte used: 0.1 M Na_2SO_4 (pH7, PBS); scan rate 0.010 V/s. Illumination 35 mW cm⁻².

Fig S3:UV-visible absorbance plot for photocatalytic degradation of Rhodamine-B using(a)0.01 M TX-100 modified In₂O₃ nano powder&(a')pure In₂O₃ nano powder(inset).

Fig S3:UV-visible absorbance plot for photocatalytic degradation of Acetophenone using(**b**)0.01 M TX-100 modified In₂O₃ nano powder&(**b**')pure In₂O₃ nano powder(**inset**).

Fig S3:UV-visible absorbance plot for photocatalytic degradation of Nitrobenzene using**(c)** $0.01 \text{ M TX-}100 \text{ modified } \ln_2O_3 \text{ nano powder}$ **(c')**pure $\ln_2O_3 \text{ nano powder}$ **(inset)**.

Fig S4: Comparison plot of % degradation of organic substrates against irradiation time for pure and 0.01 M TX-100 modified In_2O_3 thin films.