Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Electronic Supplementary Information (ESI)

Camphor based 1,3-diamine Ru(II) terpyridine complex: Synthesis, characterization, kinetic investigation and DNA binding

Milan M. Milutinović,^{a,b} Živadin D. Bugarčić^{b,†} and René Wilhelm^{a,*}

^a Department of Organic Chemistry, University of Paderborn, Warburger Straße 100, 33098 Paderborn, Germany, email: rene.wilhelm@uni-paderborn.de

^b Faculty of Science, University of Kragujevac, R. Domanovića 12, 34000 Kragujevac, Serbia

Experimental Part	S2
Fig S1. 1H-NMR and 13C-NMR spectra	S3
Fig. S2 Electrospray (ESI)-MS	S 5
Fig. S3 Time evolution of the UV-Vis	S6
Fig. S4 <i>Eyring</i> plot	S7
Calculation of DNA-binding constant	S7
Fig. S5 Absorption spectra	S8
Fig. S6 Plot of [DNA]/($\epsilon_a - \epsilon_f$) versus [DNA]	S8
References	S 9

Experimental part:

General Experimental. All commercially available chemicals were used without further purification. Silica gel 60 (0.063-0.040 mm particle size) was used for column chromatography. Thin layer chromatography was performed on plates from Merck (Silica gel 60, F254). Substances were detected under UV-light at 254 nm. NMR spectra were recorded at 30 °C on a Bruker Avance 500 spectrometer (¹H-NMR: 700 MHz; ¹³C-NMR: 175 MHz; ¹⁵N-NMR: 70 MHz). The NMR signals are referenced to the residual proton or carbon signals of the deuterated solvent (¹H- and ¹³C-NMR) and are reported in ppm relative to TMS. Liquid ammonia was used as an external reference for ¹⁵N-NMR. Mass spectrometry was carried out on Waters Quadrupole-ToF Synapt 2G using electrospray ionization (ESI). Synthesis of the ligand is prepared according to the literature procedure.^{S1}

Preparation of the ligand and complex

Ruthenium(II) terprydine complex **1** was synthesized by a literature method described earlier.⁵² RuCl₃ x 3 H₂O (1 mmol) was dissolved in 139.0 mL of ethanol and the solution was refluxed until the color of the solution changed from brown to green (*ca.* 2h). Terpyridine, tpy, (1 mmol) was added and reflux continued for 5 h where the color of the solution turned again to brown with a formation of the product as a brown solid. The brown solid is [Ru(tpy)Cl₃] complex **A** which was used without further purification. **A** (0.181 mmol), *N-N* ligand (0.218 mmol) **B**, LiCl (1,814 mmol) and Et₃N (0.544 mmol) were mixed in a 20 mL solution of EtOH/H₂O which afforded ruthenium(II) complex **1** as a dark purple liquid. The product was purified via column chromatography on silica gel using dichloromethane/methanol (75:25, *v/v*) as eluent. The purple fraction was collected and the solvent removed to give a purple solid of complex **1** (yield 68%, 0.123 mmol) (Scheme 1).

¹H-NMR (CD₃OD) δ [ppm] = 9.35 (d, *J* = 5 Hz, 1H, Dia2), 9.29 (d, *J* = 5 Hz, 1H, Dia1), 9.18 (d, *J* = 5 Hz, 1H, Dia2), 9.12 (d, *J* = 5 Hz, 1H, Dia1), 8.43-8.37 (m, 8H, Dia1+Dia2), 7.98-7.93 (m, 4H, Dia1+Dia2), 7.77-7.73 (m, 2H, Dia1+Dia2), 7.63-7.60 (m, 4H, Dia1+Dia2), 4.48 (s, br, NH), 3.80-3.78 (m, 1H, Dia1), 2.48-2.43 (m, 1H, Dia2), 2.40-2.39 (m, 1H, Dia2), 2.26-2.23 (m, 2H, Dia1), 2.07-2.02 (m, 1H, Dia2), 1.75 (s, 3H, Dia2), 1.70-1.67 (m, 1H, Dia2), 1.51-1.46 (m, 1H, Dia1), 0.93 (s, 3H, Dia1), 0.91 (s, 3H, Dia2), 0.90 (s, 3H, Dia1), 0.86 (s, 3H, Dia2), 0.83 (s, 3H, Dia1), 0.74-0.71 (m, 1H, Dia1), 0.47-0.42 (m, 1H, Dia2)

¹³C-NMR (CD₃OD) δ [ppm] = 162.6 (q), 162.4 (q), 162.3 (q), 162.2 (q), 162.1 (q), 162.0 (q), 161.8 (q), 161.5 (q), 155.7 (+), 155.4 (+), 155.2 (+), 137.4 (+), 137.2 (+), 137.1 (+), 137.0 (+), 131.3 (+), 131.2 (+), 127.4 (+), 127.3 (+), 127.1 (+), 123.7 (+), 123.6 (+), 123.5 (+), 122.9 (+), 122.8 (+), 122.3 (+), 122.2 (+), 65.6 (+), 65.5 (q), 64.5 (q), 63.8 (+), 48.6 (+), 48.4 (+), 36.7 (-), 36.3 (-), 28.8 (-), 27.7 (-), 27.3 (+), 26.9 (+), 24.4 (+), 23.1 (+), 16.9 (+), 16.5 (+), 9.2 (q).

¹⁵N-NMR (CD₃OD) δ [ppm] = 294, 248, 247, 19, -5.

HRMS (ESI) m/z calcd for $C_{23}H_{29}CIN_5Ru 512.1155 [M]^+$, found: 512.1170.

Fig. S1 NMR spectrums of complex 1 in CD_3OD at ambient temperature.

S4

Fig. S3 Time evolution of the UV-Vis (top row). Experimental conditions and UV-Vis difference spectra (bottom row, $\Delta A = A_t - A_0$, where A_t = absorbance at time *t* and A_0 = absorbance at the time at which the first spectrum was recorded) during the aquation of the complex **1** (0.1 mM) in H₂O at room temperature.

DNA-binding studies

Calculation of DNA-binding constant

In order to compare quantitatively the binding strength of the complexes, the intrinsic binding constants K_b were determined by monitoring the changes in absorption at the MLCT band with increasing concentration of CT-DNA using the following equation (S1):^{S3}

$$[DNA]/(\varepsilon_a - \varepsilon_f) = [DNA]/(\varepsilon_b - \varepsilon_f) + 1/[K_b(\varepsilon_b - \varepsilon_f)]$$
(S1)

 K_b is given by the ratio of slope to the y intercept in plots [DNA]/($\varepsilon_a - \varepsilon_f$) versus [DNA] (**Fig. S6**), where [DNA] is the concentration of DNA in base pairs, $\varepsilon A = A_{obs}$ /[complex], ε_f is the extinction coefficient for the unbound complex and ε_b is the extinction coefficient for the complex in the fully bound form.

Stern-Volmer equation for EB competitive studies

The relative binding of complexes to CT-DNA is described by Stern-Volmer equation (S2):54

 $I_0/I = 1 + K_{sv}[Q]$ (S2)

Where, I_0 and I are the emission intensities in the absence and the presence of the quencher (complex **1**), respectively, [Q] is the total concentration of quencher, K_{sv} is the dynamic quenching constant. (**Fig. 5**).

Fig. S5 Absorption spectra of the complex **1** in PBS buffer upon addition of calf thymus DNA; $[1] = 1.25 \times 10^{-5} \text{ M}$, [CT-DNA] = (0.12-1.25) x 10^{-5} M . Arrow shows the absorbance changing upon increasing DNA concentrations.

Fig. S6 Plot of [DNA]/($\varepsilon_a - \varepsilon_f$) versus [DNA] for the complexes **1**.

References

- M. Koppenwallner, E. Rais, M. Uzarewicz-Baig, S. Tabassum, M.-A. Gilani, R. Wilhelm, Synthesis, 2015, 47, 789.
- S2. M. M. Milutinović, A. Rilak, I. Bratsos, O. Klisurić, M. Vraneš, N. Gligorijević, S. Radulović, Ž. D.
 Bugarčić, J. Inorg. Biochem., 2017, 169, 1.
- S3. A. M. Pyle, J. P. Rehmann, R. Meshoyrer, C. V. Kumar, N. J. Turro and J. K. Barton, *J. Am. Chem. Soc.*, 1989, **111**, 3051-3058.
- S4. R. Lakowicz and G. Weber, *Biochemistry*, 1973, **12**, 4161-4170.