Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Exploring and exploiting different catalytic systems for the direct conversion of cellulose into levulinic acid

Cinzia Chiappe^{a,*}, Maria Jesus Rodriguez Douton^a, Andrea Mezzetta^a, Lorenzo Guazzelli^a, Christian Silvio Pomelli^a, Giulio Assanelli^b, Alberto Renato de Angelis^{b,*}

Supporting Information

Table of contents

Catalysts screened	page S2
Effect of the temperature on levulinic acid yield with (MepyrrH)(HSO ₄)	page S3
Effect of reaction time on levulinic acid yield with (TMGH)(HSO ₄)	page S4
Effect of TiOSO ₄ ·xH ₂ O loading on levulinic acid yield	page S5
FTIR spectrum of a) commercial TiOSO ₄ ·xH ₂ O and b) hydrolyzed TiOSO ₄ ·xH ₂ O	page S6
Thermal gravimetric analysis (TGA) of commercial TiOSO $_4xH_2O$ and hydrolyzed TiOSO $_4xH_2O$	page S7
IR spectra of solid products pages S8-S12	

Figure S1 Catalysts tested in this work.

Figure S2 Effect of the temperature on LA yield (mol%). Reaction conditions: (MepyrrH)(HSO₄) 6 g, H₂O 15 g, CO₂ 12 bar, 3,5 or 5 wt% MCC (red and blu, respectively), 4 h.

Figure S3. Effect of reaction time on LA and HMF yield (mol%). Reaction conditions: (TMGH)(HSO₄) 6 g, H₂O 15 g, CO₂ 12 bar, 5 wt% MCC, 180 °C.

Figure S4. Effect of catalyst loading on LA yield (mol%). Reaction conditions: catalyst TiOSO₄, H₂O 40 mL, 2.5 wt% CFP, 195°C, 4h.

Figure S5 FTIR spectrum of a) commercial TiOSO₄·xH₂O and b) hydrolyzed TiOSO₄·xH₂O under reaction conditions.

Figure S6 Thermal gravimetric analysis (TGA) of commercial TiOSO₄·xH₂O and hydrolyzed TiOSO₄·xH₂O.

% Transmittance

Figure S7 IR spectra of MCC

Figure S8 IR spectra of unreacted cellulose

Figure S9 IR spectra of mixture metals derived Humins/unreacted cellulose

