Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Supplementary Material

On the copper(II) binding of asymmetrically functionalized tripodal peptides: solution equilibrium, structure, and enzyme mimicking

Ágnes Dancs^{a,b}, Katalin Selmeczi^b, Nóra May^c, Tamás Gajda^{a,*}

^a Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary

^b Université de Lorraine – CNRS, UMR 7565 SRSMC, BP 70239, 54506 Vandœuvre-lès-Nancy, France

^c Institute of Organic Chemistry, Research Centre for Natural Sciences HAS, Magyar tudósok körútja 2, H-1117 Budapest, Hungary

Supplementary Information content:

Measured UV-Vis and CD spectra of Cu(II)-L¹ and Cu(II)-L² systems (Figs. S1-S4)

Measured and calculated EPR spectra (Fig. S5) and table of corresponding parameters (Table S1)

¹³C NMR spectra recorded in Cu(II)-L¹ system (Fig. S6)

pH, [complex]_{tot} and [O₂]_{tot} dependence of observed pseudo-first order rate constants ($k_{obs,corr}$) in H₂DTBC oxidation by Cu(II)-L² 1:1 and 2:1 systems (Figs. S7-S8)

Substrate binding followed by CD spectroscopy (catechol, 4-nitrocatechol, Fig. S9)

Fig. S1. pH-dependent UV-Vis spectra of Cu(II)-L¹ 1:1 system ($[L^1]_{tot} = [Cu(II)]_{tot} = 8.8 \times 10^{-4}$ M, I = 0.1 M NaCl, T = 298 K). Insert: pH-dependent absorbances at 400 nm (\blacklozenge), 630 nm (\blacktriangle) and 800 nm (\Box).

Fig. S2. pH-dependent CD spectra of Cu(II)-L¹ 1:1 system ([L¹]_{tot} = [Cu(II)]_{tot} = 8.8×10^{-4} M, I = 0.1 M NaCl, T = 298 K). Insert: pH-dependent ΔA at 305 (\blacklozenge), 535 nm (\square) and 635 nm (\blacktriangle).

Fig. S3. pH-dependent UV-Vis spectra of Cu(II)-L² 1:1 (**A**) and 2:1 (**B**) systems ([L²]_{tot} = 1.7×10^{-3} M, [Cu(II)]_{tot} = 1.7×10^{-3} M and 2.4×10^{-3} M, respectively, I = 0.1 M NaCl, T = 298 K). Insert: pH-dependent absorbances at **A**: 550 (\blacklozenge) and 640 nm (\Box), **B**: 400 nm (\diamondsuit) and 565 nm (\Box).

Fig. S4. pH-dependent CD spectra of Cu(II)-L² 1:1 (A) and 2:1 (B) systems ([L²]^{tot} = 1.7×10^{-3} M, [Cu(II)]^{tot} = 1.7×10^{-3} M and 2.4×10^{-3} M, respectively, I = 0.1 M NaCl, T = 298 K). Insert: pH-dependent absorbances at A: 325 nm (\blacklozenge), 595 nm (\Box) and 675 nm (\blacktriangle), B: 325 nm (\blacklozenge), 510 nm (\Box) and 700 nm (\bigstar).

		Anisotropic parameters ^a							Calculated parameters ^a
		g _x	gy	gz	A_x / G	A_y/G	A_z/G	%	go, calc
Cu(II)-L ¹ 1:1	pH 5.08	2.036(1)	2.090(1)	2.212(1)	32(1)	25(3)	177.9(6)	100	2.113
Cu(II)-L ¹ 1:1	pH 9.17	2.053(2)	2.072(2)	2.210(1)	41(2)	46(5)	157(1)	100	2.112
Cu(II)-L ² 1:1	pH 6 02	2.036(1)	2.090(1)	2.212(1)	32(1)	25(3)	177.9(6)	15	2.113
0 ((1) 2 111	p11 0.0 -	2.096(2)			153(5) ^b			85	
Cu(II)-L ² 1:1	рН 9.55	2.033(1)	2.063(1)	2.197(2)	4(3)	19(3)	178(2)	100	2.097
Cu(II)-L ² 2:1	рН 6.59	2.106(1)			128(5) ^b			100	
Cu(II)-L ² 2:1	pH 10.54	2.108(1)			137(5) ^b			100	

Table S1. Calculated EPR parameters of individual samples of Cu(II)-L¹ and Cu(II)-L²recorded at 77 K.

^a $g_{o,calc} = (g_x + g_y + g_z)/3$, ^b full width at half maximum

Fig. S5. Anisotropic EPR spectra recorded at 77 K in Cu(II)-L¹ and Cu(II)-L² systems ([L¹]_{tot} = [Cu(II)] = 0.0016 M in Cu(II)-L¹ system, [L²]_{tot} = 0.0018 M, [Cu(II)]_{tot} = 0.0018 M or 0.0036 M in Cu(II)-L² systems, I = 0.1 M NaCl, grey: simulated, black: measured). Calculated parameters are listed in Table S1.

Fig. S6. ¹³C NMR spectra of L¹ in presence of 0% (black), 5% (red) and 10% (blue) Cu(II) (in H₂O, pH 8.5, $[L^1]_{tot} = 0.05$ M, T = 298 K). Axis is scaled to the spectrum of the free ligand.

Fig. S7. pH-dependent reaction rate constants ($k_{obs,corr}$, secondary axis) in Cu(II)-L² 1:1 (left) and 2:1 (right) systems with the corresponding speciation diagrams (primary axis) (in EtOH/H₂O 50/50%, pH_{corr} = 8.7, [H₂DTBC]_o =8.0×10⁻⁴ M and 4.0×10⁻⁴ M, respectively, [complex]_{tot} = 5.0×10⁻⁵ M and 1.0×10⁻⁵ M, respectively).

Fig. S8. Dependence of reaction rate constants on complex (left) and dioxygen concentrations (right) in Cu(II)-L² 2:1 system (in EtOH/H₂O 50/50%, pH_{corr} = 8.7, [H₂DTBC]_o = 5.4×10^{-4} M and 5.5×10^{-4} M, respectively; at [O₂] dependence [complex]_{tot} = 9.9×10^{-6} M).

Fig. S9. Catechol (up) and 4-nitrocatechol (down) dependent CD spectra of Cu(II)-L² 2:1 system under anaerobic conditions ([complex]_{tot} = 5.4×10^{-4} M and 3.5×10^{-4} M, respectively, in EtOH/H₂O 50/50, pH_{corr} = 8.7).