Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry.

ESI

Bio-inspired unprecedented synthesis of reduced graphene oxide: catalytic probe for electro-/chemical reduction of nitro group in aqueous medium

Suhasini Mahata,^a Anjumala Sahu, ^a Prashant Shukla,^b Ankita Rai, ^b Manorama Singh, ^a and Vijai K. Rai ^{a*}

Table of Contents

- 1. General Information
- 2. Comparison of FTIR spectra of nitrobenzene and aniline.
- 3. Spectroscopic (FTIR, ¹H NMR and ¹³ C NMR) data of aniline.
- 4. ¹H NMR and ¹³C NMR Spectra of Aniline.

- 1. General Information: All chemicals used in this study were analytical grade, commercially available and used without further purification. Graphite (CAS No.1E4011854, particle size: <100µm) was purchased from Sdfine. Most of the products were identified by FTIR, ¹H NMR and ¹³C NMR. The progress of the catalytic reactions was monitored by TLC using silica gel. FT-IR spectra were recorded on a Thermo Nicolet, Avatar370 Spectrometer with resolution 4 cm⁻¹ and Sample in KBr. The ¹H NMR and ¹³C NMR spectra were recorded on a Bruker Advance III, 400 MHz instrument in CDCl3 or DMSO-*d6* solvents using TMS as internal standard. Chemical shifts were reported in ppm (δ) and coupling constants (*J*) in Hz. X-ray diffraction (XRD) analysis was conducted on a Bruker AXS D8 Xray diffractometer with CuK α radiation($\lambda = 1.5406$ Å). A transmission electron microscopy (JEOL 2100F) with an accelerating voltage 200 kV with a probe size under 0.5 nm to examine the morphology. The Scanning electron microscopy with EDAX images were obtained on VEGA 3 TESCAN, EDAX (Bruker) instrument. The absorbance of graphene oxide solutions was detected by UV-Vis Spectrophotometer.
- The characteristic N=O *str.* at 1570-1500 cm⁻¹ and 1370-1300cm⁻¹ completely removed and a significant peak at 1278.42 cm⁻¹ appeared for the C-N str.in primary aromatic amines, showed in FTIR spectrum of aniline

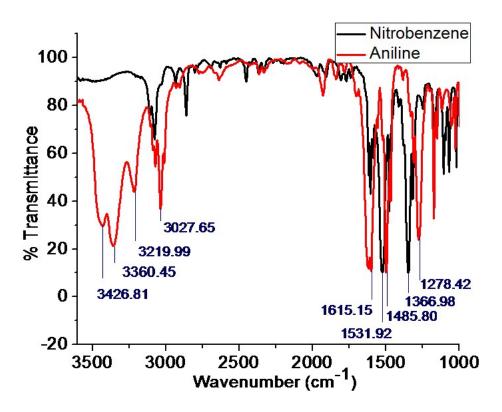


Fig. S 1: Comparison of FTIR spectra of nitrobenzene and aniline.

The ¹H NMR and ¹³C NMR spectra were recorded on a Bruker Advance III, 400 MHz instrument in CDCl₃ or DMSO-*d6* solvents using TMS as internal standard. Chemical shifts were reported in ppm (δ) and coupling constants (*J*) in Hz. *Aniline*: pale brown liquid (94%), bp 184-185 °C. IR (KBr) v_{max} 3426.81, 3360.45, 3027.65, 1615.15, 1485.80, 1278.42 cm⁻¹. ¹H NMR (400 MHz; CDCl₃/TMS): δ:

7.15 (dd, 2H _{aromatic}, *J* =7.2, 0.8 Hz) 6.75 (t, 1H _{aromatic}, *J* =7.6 Hz), 6.68 (d, 2H _{aromatic}, *J* =7.2, 0.8 Hz), 4.14 (s, 2H, N-H). ¹³C NMR (CDCl₃/TMS) δ: 115.2, 118.6, 129.3, 146.4.

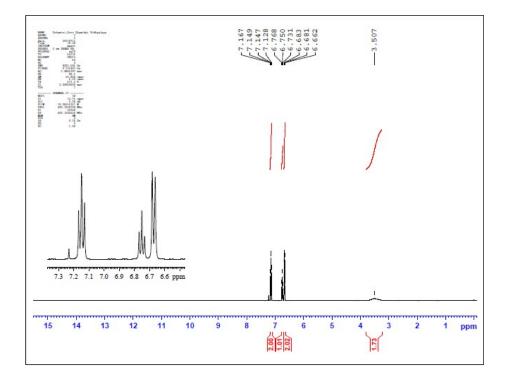


Fig. S 2: ¹H NMR spectrum of aniline

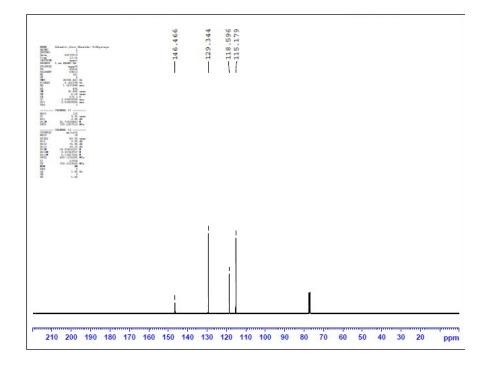


Fig. S 3: ¹³C NMR spectrum of aniline