Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Supplementary material

Photofunctional hybrids of TiO₂ and titanium metal-organic

frameworks for dye degradation and lanthanide ions tuned multi-

color luminescence

Shu-Yin Zhu, Bing Yan*

School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China

* Corresponding author: Email address: <u>byan@tongji.edu.cn</u> (Bing Yan)

Figure S1 Powder X-ray diffraction (PXRD) patterns of the experimental and simulated MIL-125(Ti).

Figure S2 Powder X-ray diffraction (PXRD) patterns of the experimental and simulated TiO₂.

Figure S3 TEM image of the as-prepared MIL-125(Ti)@TiO₂

Figure S4 TEM image of the as-prepared MIL-125(Ti)@TiO₂

Figure S5 N₂ adsorption-desorption isotherms of the as-synthesized TiO₂ ,MIL-125(Ti) and MIL-125(Ti)@TiO₂

Figure S6 UV-vis absorption spectrum of Rh B.

Figure S7 the removal of Rh B during blank experiment

Figure S8 The powder X-ray diffraction (PXRD) patterns of TiO₂ (a), MIL-125(Ti) (b) and hybrid MIL-125(Ti)@TiO₂ (c) before and after the photocatalytic process.

Figure S9 N₂ adsorption–desorption isotherms of TiO₂ (a), MIL-125(Ti) (b), MIL-125(Ti)@TiO₂ (c)before and after the photocatalytic process

Figure S10 Room temperature excitation and emission spectra of ligand H₂BDC-NH₂

Figure S11 Room temperature excitation and emission spectra of MIL-125(Ti) (a), TiO₂ (b) and hybrid MIL-125(Ti)@TiO₂.

Figure S12 Emission spectra of Sm@MIL-125(Ti)@TiO₂ at different excitation wavelengths (360 and 365nm).

Figure S13 CIE chromaticity coordinates of the initial Eu@MIL-125(Ti)@TiO₂

Figure S14 CIE chromaticity coordinates of the hybrid MIL-125(Ti)@TiO₂

Figure S15 Different doping ratios of Eu^{3+} and Tb^{3+} to get the white light integration of the Eu/Tb@ MIL-125(Ti)@TiO₂

Catalyst Sample	Before the photocatalytic process/m ² g ⁻¹	After the photocatalytic process/m ² g ⁻¹
TiO2	158.3238	145.7157
MIL-125(Ti)	572.0271	562.8334
MIL-125(Ti)@TiO2	483.7462	482.1198

Table S1 the BET surface area of catalysts before and after the photocatalytic process