Electronic Supplementary Information

Synthesis, structural characterization, biological evaluation and molecular docking studies of new platinum(II) complexes bearing isocyanides

Masood Fereidoonnezhad,^a Hamid R. Shahsavari,^{*b} Sedigheh Abedanzadeh,^c Ali Nezafati,^{d,a} Ali Khazali,^{d,a} Piero Mastrorilli,^e Mojgan Babaghasabha,^b Zeinab Faghih,^f Zahra Faghih,^g Samira Bahemmat,^h and M. Hassan Beyzavi^{*i}

^aDepartment of Medicinal Chemistry, School of Pharmacy; Toxicology Research Center; Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.

^bDepartment of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran.

^cDepartment of Chemistry, Isfahan University of Technology, Isfahan 84156, Islamic Republic of Iran.

^dStudent Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.

^eDICATECh, Politecnico di Bari, I-70125 Bari, Italy

^fPharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.

^gShiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.

^hChemistry & Chemical Engineering Research Center of Iran, Tehran, 14968-13151, Iran.

ⁱDepartment of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States.

*Email: shahsavari@iasbs.ac.ir (H.R.S.), beyzavi@uark.edu. (M.H.B.).

Contents:	Page
Figure S1. Experimental (top) and calculated (bottom) HR ESI-MS spectra of 1a	4
showing the ion $[1a + Na]^+$.	
Figure S2. Experimental (top) and calculated (bottom) HR ESI-MS spectra of 1b	4
showing the ion $[1b + Na]^+$.	
Figure S3. Experimental (top) and calculated (bottom) HR ESI-MS spectra of 1c	5
showing the ion $[1c + Na]^+$.	
Figure S4. Experimental (top) and calculated (bottom) HR ESI-MS spectra of 2a	5
showing the ion $[2a + Na]^+$.	
Figure S5. Experimental (top) and calculated (bottom) HR ESI-MS spectra of 2b	6
showing the ion $[2b + Na]^+$.	
Figure S6. Experimental (top) and calculated (bottom) HR ESI-MS spectra of 2c	6
showing the ion $[2\mathbf{c} + \mathbf{Na}]^+$.	
Figure S7. ¹ H NMR spectrum of 1a in CDCl ₃ at room temperature.	7
Figure S8. ¹³ C{ ¹ H} NMR spectrum of 1a in CDCl ₃ at room temperature.	7
Figure S9. ¹ H NMR spectrum of 1c in CDCl ₃ at room temperature.	8
Figure S10. ¹³ C{ ¹ H} NMR spectrum of 1c in CDCl ₃ at room temperature.	8
Figure S11. ¹ H NMR spectrum of 2a in CDCl ₃ at room temperature.	9
Figure S12. ${}^{13}C{}^{1}H$ NMR spectrum of 2a in CDCl ₃ at room temperature.	9
Figure S13. ¹ H NMR spectrum of 2b in CDCl ₃ at room temperature.	10
Figure S14. ${}^{13}C{}^{1}H$ NMR spectrum of 2b in CDCl ₃ at room temperature.	10
Figure S15. ¹ H NMR spectrum of 2c in CDCl ₃ at room temperature.	11
Figure S16. ${}^{13}C{}^{1}H$ NMR spectrum of 2c in CDCl ₃ at room temperature.	11
Table S1. Crystal data and structure refinements of 2b.	12
Figure S17. Packing diagram of 2b showing CH $\cdots\pi$ interactions.	13
Table S2. Calculated chemical descriptors for the compounds.	14
Figure S18. Molecular docking simulation studies of the interaction between 1a and	15
DNA (PDB ID: 1BNA).	
Figure S19. Molecular docking simulation studies of the interaction between 1c and	16
DNA (PDB ID: 1BNA).	
Figure S20. Molecular docking simulation studies of the interaction between 2a and	17
DNA (PDB ID: 1BNA)	
Figure S21. Molecular docking simulation studies of the interaction between 1a and	18
DNA (PDB ID: 1LU5).	
Figure S22. Molecular docking simulation studies of the interaction between 1c and	19
DNA (PDB ID: 1LU5).	
Figure S23. Molecular docking simulation studies of the interaction between 2a and	20
DNA (PDB ID: 1LU5).	
Figure S24. The optimized structures of 1a. Hydrogen atoms were omitted for clarity.	21
Figure S25. The optimized structures of 1b. Hydrogen atoms were omitted for clarity.	21
Figure S26. The optimized structures of 1c. Hydrogen atoms were omitted for clarity.	21
Figure S27. The optimized structures of 2a. Hydrogen atoms were omitted for clarity.	22
Figure S28. The optimized structures of 2b. Hydrogen atoms were omitted for clarity.	22
Figure S29. The optimized structures of 2c. Hydrogen atoms were omitted for clarity.	22
Table S3. XYZ coordinates for 1a.	23

Table S4. XYZ coordinates for 1b.	24
Table S5. XYZ coordinates for 1c.	25
Table S6. XYZ coordinates for 2a.	26
Table S7. XYZ coordinates for 2b.	28
Table S8. XYZ coordinates for 2c.	29
Table S9. The participating atom in bonding on 1BNA.	32
Table S10. The participating atom in bonding on 1LU5.	32

Figure S1. Experimental (top) and calculated (bottom) HR ESI-MS spectra of 1a showing the ion $[1a + Na]^+$.

Figure S2. Experimental (top) and calculated (bottom) HR ESI-MS spectra of 1b showing the ion $[1b + Na]^+$.

Figure S3. Experimental (top) and calculated (bottom) HR ESI-MS spectra of 1c showing the ion $[1c + Na]^+$.

Figure S4. Experimental (top) and calculated (bottom) HR ESI-MS spectra of 2a showing the ion $[2a + Na]^+$.

Figure S5. Experimental (top) and calculated (bottom) HR ESI-MS spectra of 2b showing the ion $[2b + Na]^+$.

Figure S6. Experimental (top) and calculated (bottom) HR ESI-MS spectra of 2c showing the ion $[2c + Na]^+$.

Figure S8. ${}^{13}C{}^{1}H$ NMR spectrum of 1a in CDCl₃ at room temperature.

Figure S10. ${}^{13}C{}^{1}H$ NMR spectrum of 1c in CDCl₃ at room temperature.

Figure S12. ${}^{13}C{}^{1}H$ NMR spectrum of 2a in CDCl₃ at room temperature.

Figure S16. ${}^{13}C{}^{1}H$ NMR spectrum of 2c in CDCl₃ at room temperature.

Empirical formula	$C_{30}H_{28}N_2Pt$
Formula weight	611.63
Temperature	293(2) K
Wavelength	0.71073 Å
Crystal system	Triclinic
Space group	P-1
Unit cell dimensions	$a = 9.994(2) \text{ Å}, \alpha = 94.44(3)^{\circ}$
	$b = 10.991(2) \text{ Å}, \beta = 111.73(3)^{\circ}$
	$c = 13.402(3)$ Å, $\gamma = 106.35(3)^{\circ}$
Volume	1284.7(6) Å ³
Ζ	2
Density (calculated)	1.581 Mg/m ³
Absorption coefficient	5.480 mm ⁻¹
F(000)	600
Crystal size	0.500 x 0.450 x 0.400 mm ³
Theta range for data collection	1.671 to 24.993°.
Index ranges	-11<=h<=10
	-13<=k<=13
	-15<=l<=15
Reflections collected	9678
Independent reflections	4390 [R(int) = 0.1178]
Completeness to theta = 24.993°	97.1 %
Absorption correction	Integration
Max. and min. transmission	0.9882 and 0.977
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	4390 / 294 / 298
Goodness-of-fit on F ²	1.012
Final R indices [I>2sigma(I)]	R1 = 0.0567, wR2 = 0.1255
R indices (all data)	R1 = 0.0684, wR2 = 0.1298
CCDC No.	1574855

Table S1. Crystal data and structure refinements of 2b.

Figure S17. Packing diagram of **2b** showing $CH \cdots \pi$ interactions.

Name	SA (ap) ¹	SA(Grid) ²	Vol. ³	HE ⁴	LogP ⁵	Ref ⁶	Pol ⁷	Mass	PIC ₅₀ -A549	PIC ₅₀ -SKOV3	PIC ₅₀ -MCF7
1a	716.34	578.48	906.76	4.8	1.49	57.39	25.17	391.43	4.583	4.539	4.597
1b	598.59	562.05	944.79	-1.04	1.85	87.29	33.48	459.46	4.669	4.799	4.903
1c	599.12	596.33	1007.63	4.49	2.99	71.81	30.96	443.5	4.294	4.350	4.165
2a	877.05	753.91	1296.6	3.16	2.78	115.13	44.49	543.62	4.717	4.732	4.955
2b	797.74	818.87	1399.36	-2.88	3.14	145.02	52.8	611.66	4.506	4.257	4.205
2c	759.84	796.64	1392.67	2.85	4.28	129.55	50.28	595.7	4.353	4.173	4.140

Table S2. Calculated chemical descriptors for the compounds.

¹ Surface area (Approx)
 ² Surface area (Grid)
 ³ Volume
 ⁴ Hydration Energy
 ⁵ Log partition coefficient
 ⁶ Refractivity
 ⁷ Polarizability
 ⁸ PIC₅₀: -log IC₅₀

Figure S18. Molecular docking simulation studies of the interaction between **1a** and DNA (PDB ID: 1BNA).

Figure S19. Molecular docking simulation studies of the interaction between **1c** and DNA (PDB ID: 1BNA).

Figure S20. Molecular docking simulation studies of the interaction between **2a** and DNA (PDB ID: 1BNA).

Figure S21. Molecular docking simulation studies of the interaction between **1a** and DNA (PDB ID: 1LU5).

Figure S22. Molecular docking simulation studies of the interaction between **1c** and DNA (PDB ID: 1LU5).

Figure S23. Molecular docking simulation studies of the interaction between **2a** and DNA (PDB ID: 1LU5).

Figure S24. The optimized structures of 1a. Hydrogen atoms were omitted for clarity.

Figure S25. The optimized structures of 1b. Hydrogen atoms were omitted for clarity.

Figure S26. The optimized structures of 1c. Hydrogen atoms were omitted for clarity.

Figure S27. The optimized structures of 2a. Hydrogen atoms were omitted for clarity.

Figure S28. The optimized structures of 2b. Hydrogen atoms were omitted for clarity.

Figure S29. The optimized structures of 2c. Hydrogen atoms were omitted for clarity.

Symbol	X	Y	Ζ
Pt	0.002723	1.144013	0.000089
С	1.513003	-0.160068	0.000367
С	-1.512977	-0.158562	0.00014
N	2.45213	-0.864551	0.000127
N	-2.45212	-0.862718	0.00012
С	-1.442045	2.678453	-0.00046
Н	-2.088012	2.599438	-0.885299
Н	-2.083765	2.603273	0.887818
Н	-0.978571	3.668876	-0.003692
С	1.412656	2.705394	-0.000047
Н	2.457759	2.374543	0.001769
Н	1.253476	3.329729	-0.88752
Н	1.251144	3.33216	0.885274
С	-3.649029	-1.666784	-0.000031
С	3.652488	-1.663347	-0.000103
С	-4.455659	-1.322363	1.266593
Н	-5.37415	-1.918332	1.291466
Н	-3.874311	-1.539741	2.168033
Н	-4.726609	-0.262255	1.276276
С	-4.452592	-1.326448	-1.269703
Н	-3.869056	-1.546709	-2.169028
Н	-5.371012	-1.922513	-1.294891
Н	-4.723538	-0.266383	-1.28345
С	-3.232808	-3.149625	0.002859
Н	-2.640058	-3.384666	0.89253
Н	-4.126056	-3.783031	0.002786
Н	-2.637879	-3.387527	-0.884594
C	4.514237	-1.229411	-1.201243
Н	4.778526	-0.170314	-1.125116
Н	5.436647	-1.819377	-1.224928
Н	3.976094	-1.385289	-2.141396
С	3.24604	-3.143634	-0.125
Н	4.142204	-3.772917	-0.127746
Н	2.612648	-3.444528	0.715497
Н	2.696017	-3.317901	-1.05516
С	4.39505	-1.40999	1.325832
Н	4.658713	-0.352697	1.425622

 Table S3. XYZ coordinates for 1a.

Н	3.77228	-1.693827	2.179905
Н	5.314897	-2.003819	1.351981

Table S4. XYZ coordinates for 1b.

Symbol	X	Y	Ζ
Pt	0.048217	-1.636364	0.003884
С	-1.738013	-0.927226	0.527848
С	1.175285	-0.151663	0.722501
N	-2.819629	-0.56108	0.798576
N	1.908411	0.67458	1.117984
С	-4.152028	-0.131947	1.056089
Н	-4.251569	0.0539	2.131617
Н	-4.82001	-0.969896	0.814549
С	2.874098	1.618236	1.56914
Н	3.233196	1.277737	2.550208
Н	2.367743	2.576436	1.731713
С	-4.55409	1.109792	0.272122
С	-4.043038	1.370172	-1.003228
С	-5.498194	1.98186	0.825161
С	-4.473911	2.490512	-1.715666
Н	-3.302127	0.703828	-1.43573
С	-5.93325	3.098174	0.109525
Н	-5.894488	1.789984	1.820091
С	-5.420779	3.355424	-1.163392
Н	-4.067075	2.68629	-2.703909
Н	-6.664878	3.7697	0.55049
Н	-5.753841	4.227287	-1.719629
С	4.043388	1.801156	0.610853
С	4.701055	3.035937	0.581755
С	4.504471	0.757141	-0.197127
С	5.812871	3.224889	-0.239997
Н	4.342177	3.855139	1.201474
С	5.612789	0.949929	-1.02378
Н	3.994157	-0.2017	-0.191911
С	6.270958	2.180995	-1.046043
Н	6.313462	4.189178	-0.256617
Н	5.959164	0.134391	-1.652494
Н	7.132275	2.328025	-1.691815
С	1.836275	-2.541264	-0.650747

Н	2.294313	-1.932181	-1.442292
Н	2.560669	-2.626604	0.170446
Н	1.658776	-3.542304	-1.053278
С	-0.903847	-3.316184	-0.830692
Н	-1.998232	-3.2897	-0.779839
Н	-0.611295	-3.408545	-1.883199
Н	-0.559023	-4.214627	-0.304707

 Table S5. XYZ coordinates for 1c.

Symbol	X	Y	Ζ
Pt	0.00163	-1.455071	-0.033267
С	1.542122	-0.200191	0.181369
С	-1.476517	-0.117315	0.050092
Ν	2.491868	0.478564	0.302293
Ν	-2.396512	0.61071	0.08975
С	3.687326	1.252954	0.405847
С	4.936561	0.35427	0.386578
С	3.746698	2.313845	-0.726744
С	6.197984	1.188906	0.713961
Н	4.815929	-0.46764	1.099235
С	5.199154	2.761024	-1.017783
Н	3.296458	1.884909	-1.628344
С	6.082302	2.656592	0.233403
Н	6.384898	1.171605	1.794429
Н	5.627871	2.132246	-1.808981
Н	5.650796	3.279595	1.029108
С	-3.578378	1.412079	0.119306
С	-4.280165	1.391851	-1.266076
С	-4.537265	0.949142	1.230815
С	-5.786746	1.725153	-1.150606
Н	-3.772818	2.104319	-1.926488
С	-5.704641	1.954086	1.380896
Н	-4.910251	-0.047724	0.966229
С	-6.070709	2.645625	0.044493
Н	-6.134528	2.182273	-2.08382
Н	-6.57647	1.419135	1.7752
Н	-5.490162	3.571509	-0.070733
Н	-6.36221	0.79809	-1.030037
Н	-4.146202	0.399096	-1.708425

Н	-7.12405	2.947913	0.054956
Н	-5.446728	2.714786	2.12767
Н	-3.991608	0.840963	2.173665
Н	5.015327	-0.100285	-0.608468
Н	7.064689	0.709616	0.244075
Н	7.079221	3.066186	0.035
Н	5.197537	3.785216	-1.407544
Н	3.12597	3.170039	-0.438576
Н	-3.25504	2.435885	0.347524
Н	3.644051	1.762249	1.377376
С	-1.441892	-2.965999	-0.276835
Н	-1.326325	-3.703556	0.526461
Н	-2.478675	-2.610046	-0.267104
Н	-1.265205	-3.477635	-1.230738
С	1.409362	-3.019534	-0.143671
Н	2.128033	-2.840787	-0.954646
Н	1.976723	-3.087575	0.794483
Н	0.92696	-3.984703	-0.321272

Table S6. XYZ coordinates for 2a.

Symbol	X	Y	Z
Pt	-0.000085	0.230922	-0.000047
С	-1.529486	1.527359	0.026117
С	1.529172	1.527558	-0.026291
N	-2.494331	2.190318	0.06268
N	2.493998	2.190544	-0.062789
С	-1.432968	-1.268767	-0.01688
С	-1.528697	-2.225348	1.010016
С	-2.378437	-1.369723	-1.05338
С	-2.513872	-3.214748	1.004986
Н	-0.812911	-2.206833	1.827583
С	-3.356281	-2.370312	-1.069025
Н	-2.357162	-0.656623	-1.87575
С	-3.444509	-3.311816	-0.038153
Н	-2.554935	-3.932095	1.823948
Н	-4.062297	-2.418129	-1.897637
С	1.433128	-1.26846	0.016972
С	1.529492	-2.224586	-1.010337
С	2.378083	-1.369701	1.053849

С	2.514804	-3.213804	-1.005294
Н	0.814053	-2.205828	-1.828204
С	3.356116	-2.370157	1.069488
Н	2.35627	-0.657007	1.876558
С	3.445011	-3.311146	0.038252
Н	2.556336	-3.930812	-1.824535
Н	4.061723	-2.418259	1.898427
С	-4.483643	-4.41015	-0.060298
Н	-4.062096	-5.358512	-0.421637
Н	-4.889785	-4.602211	0.940154
Н	-5.321458	-4.156603	-0.719699
С	4.484506	-4.409147	0.060115
Н	5.318305	-4.158976	0.725839
Н	4.061288	-5.359778	0.413411
Н	4.896657	-4.595278	-0.939031
С	3.794393	2.817152	-0.135568
С	-3.794692	2.816973	0.13563
С	-3.6288	4.316507	-0.167635
Н	-4.605506	4.80925	-0.123567
Н	-2.967351	4.791643	0.563842
Н	-3.208822	4.467618	-1.167077
С	-4.698028	2.135649	-0.9101
Н	-4.754597	1.058539	-0.726622
Н	-5.706442	2.559095	-0.85443
Н	-4.30919	2.294956	-1.920849
С	-4.34177	2.599166	1.559221
Н	-3.679909	3.052387	2.303882
Н	-5.330905	3.061172	1.645219
Н	-4.433287	1.531246	1.778554
С	4.342114	2.598392	-1.558759
Н	5.331293	3.060328	-1.644621
Н	4.433714	1.530324	-1.777336
Н	3.680596	3.051126	-2.304023
С	4.697254	2.136525	0.911032
Н	4.753954	1.059301	0.728272
Н	5.705679	2.559975	0.855568
Н	4.307923	2.296467	1.92149
С	3.628365	4.316881	0.166648
Н	2.967257	4.791557	-0.565438
Н	3.207928	4.468634	1.165798
Н	4.605094	4.809592	0.122711

Symbol	X	Y	Z
Pt	-0.0205	-0.060558	-0.555811
С	-1.630007	-1.209161	-0.889256
С	1.400751	-1.447879	-0.835838
N	-2.616869	-1.80208	-1.10107
N	2.299007	-2.188175	-0.960649
С	-3.884623	-2.404819	-1.362214
Н	-3.718211	-3.461819	-1.595361
Н	-4.28439	-1.932132	-2.269294
С	3.497946	-2.958514	-1.057474
Н	3.900057	-2.802799	-2.067491
Н	3.230456	-4.017503	-0.978183
С	-4.864623	-2.267337	-0.207236
С	-5.022823	-1.049743	0.465464
С	-5.655373	-3.362899	0.152848
С	-5.964945	-0.936585	1.487909
Н	-4.403254	-0.194822	0.207243
С	-6.603337	-3.24468	1.171378
Н	-5.531038	-4.313144	-0.361977
С	-6.758999	-2.030608	1.841273
Н	-6.076698	0.010448	2.008413
Н	-7.211382	-4.102728	1.44457
Н	-7.491832	-1.937846	2.638121
С	4.5293	-2.591683	-0.000908
С	5.247986	-3.609324	0.634189
С	4.800433	-1.254062	0.311024
С	6.236717	-3.296134	1.569147
Н	5.034794	-4.650403	0.401075
С	5.782096	-0.944527	1.252514
Н	4.241357	-0.453121	-0.165645
С	6.503975	-1.962401	1.880892
Н	6.78812	-4.094177	2.058825
Н	5.976737	0.096305	1.494498
Н	7.267184	-1.716879	2.614342
С	-1.329939	1.502147	-0.18168
С	-1.435614	2.611829	-1.038821
С	-2.168717	1.499136	0.946458
C	-2.330971	3.652955	-0.786309

Table S7. XYZ coordinates for 2b.

Н	-0.798826	2.673901	-1.917672
С	-3.056979	2.549243	1.208506
Н	-2.133181	0.665163	1.645127
С	-3.156565	3.646113	0.346164
Н	-2.383181	4.492507	-1.478579
Н	-3.680392	2.514069	2.101569
С	1.515842	1.293325	-0.224222
С	1.66823	1.966681	1.000924
С	2.478978	1.568485	-1.212051
С	2.723348	2.852598	1.227788
Н	0.943698	1.806028	1.794723
С	3.528665	2.467864	-0.992503
Н	2.416579	1.075638	-2.180897
С	3.672274	3.126765	0.233824
Н	2.806312	3.348079	2.19439
Н	4.246795	2.659108	-1.789231
С	-4.096456	4.79477	0.635432
Н	-3.562002	5.658548	1.05444
Н	-4.601565	5.142488	-0.273876
Н	-4.868094	4.508864	1.35902
С	4.786152	4.122717	0.466661
Н	5.642353	3.92965	-0.189782
Н	4.454503	5.151885	0.270554
Н	5.142835	4.094315	1.503084

Table S8. XYZ coordinates for 2c.

Symbol	X	Y	Z
Pt	0.087537	-0.265614	-0.011113
С	1.808522	0.76334	0.034708
С	-1.182831	1.286238	-0.090268
N	2.850627	1.296863	0.04221
N	-2.013237	2.111697	-0.118024
С	1.215943	-1.999716	0.113807
С	1.187973	-2.98635	-0.88883
С	2.060677	-2.247454	1.210052
С	1.962159	-4.144673	-0.802977
Н	0.539625	-2.8557	-1.751224
С	2.823968	-3.415744	1.306583
Н	2.129491	-1.518239	2.015529

С	2.791205	-4.386867	0.300694
Н	1.91431	-4.880247	-1.605292
Н	3.458687	-3.571499	2.178427
С	-1.591408	-1.480928	-0.09348
С	-1.910811	-2.387999	0.933256
С	-2.487643	-1.424767	-1.17628
С	-3.058932	-3.181	0.88469
Н	-1.24421	-2.487961	1.785679
С	-3.630298	-2.230576	-1.23517
Н	-2.295421	-0.741835	-2.002063
С	-3.939733	-3.12338	-0.203703
Н	-3.270238	-3.86591	1.705225
Н	-4.291081	-2.16272	-2.09894
С	3.597189	-5.661805	0.408553
Н	2.974892	-6.508142	0.73129
Н	4.041402	-5.941773	-0.554422
Н	4.410318	-5.561589	1.136372
С	-5.160099	-4.013792	-0.270822
Н	-5.898133	-3.629731	-0.984134
Н	-4.900284	-5.032791	-0.589803
Н	-5.650938	-4.100944	0.706101
С	4.156194	1.878203	0.016771
С	4.60161	2.138984	-1.447506
С	4.213186	3.169069	0.851714
С	5.691632	3.234586	-1.525875
Н	4.961382	1.196915	-1.875462
С	5.678356	3.650896	0.983199
Н	3.596345	3.927603	0.353867
С	6.540436	3.277156	-0.247658
Н	6.322511	3.061778	-2.404828
Н	5.676758	4.738332	1.121878
Н	7.006936	2.294342	-0.094857
С	-3.170016	2.954201	-0.111137
С	-4.302931	2.306571	-0.955284
С	-3.638659	3.234047	1.32801
С	-5.699249	2.797764	-0.507181
Н	-4.129353	2.543366	-2.011315
С	-4.764408	4.295447	1.323633
Н	-3.991968	2.290223	1.760062
C	-5.641757	4.227274	0.048928

Н	-6.395946	2.737122	-1.350727
Н	-5.386083	4.145097	2.213858
Н	-5.234543	4.895104	-0.72302
Н	-6.095648	2.128169	0.266971
Н	-4.232993	1.218202	-0.857255
Н	-6.650052	4.596388	0.267966
Н	-4.330244	5.298343	1.416894
Н	-2.793324	3.565177	1.940121
Н	3.724169	2.436897	-2.0316
Н	5.221254	4.215653	-1.67353
Н	7.365058	3.990369	-0.357685
Н	6.128674	3.225511	1.887959
Н	3.769652	2.997312	1.837835
Н	-2.866546	3.904561	-0.567854
Н	4.824264	1.138263	0.474955

Nama	DNA bases	The participating atom in bonding	Turne of Internetions
Iname		Ligand	Type of Interactions
1.	G4, A5, C11	CH ₃ of <i>t</i> -Bu-NC	Vanderwaals
1a	G4, C3, G10, C11	CH ₃ attached to Pt	Vanderwaals
1b	T7, T8	CH ₃ attached to Pt	Vanderwaals
	G10, T7, T8	CH ₂ of benzyl	Vanderwaals
1c	G10, C11	CH ₃ attached to Pt	Vanderwaals
	G4, A5, C11	cyclohexyl-NC	Vanderwaals
2a	A6, A5, G12	CH ₃ of <i>t</i> -Bu-NC	Vanderwaals
	G12	Nitrogen of <i>t</i> -Bu-NC	H.B
2b	G10, G12, C11	CH ₂ of benzyl	Vanderwaals
	G12	phenyl of benzyl-NC	Vanderwaals
2c	G10, C11	Nitrogen of cyclohexyl-NC	H.B
	G10, C11	carbon of isocyanide	Vanderwaals
	G4	phenyl attached to Pt	Arene-hydrogen

Table S9. The participating atom in bonding on 1BNA.

Table S10. The participating atom in bonding on 1LU5.

Nama	DNA bases	The participating atom in bonding	Tomo of Internetions	
Ivame		Ligand	Type of Interactions	
1.	T5, C7	CH ₃ attached to Pt	Vanderwaals	
la	A8, C7, A5	CH ₃ of <i>t</i> -Bu-NC	Vanderwaals	
1b	C11	CH ₃ attached to Pt	Vanderwaals	
	G4, G10, C9	CH ₂ of benzyl	Vanderwaals	
	G10	Nitrogen of benzyl-NC	H.B	
10	A3	CH ₃ attached to Pt	Vanderwaals	
IC	C11, T10, A3, C12	cyclohexyl-NC	Vanderwaals	
2.	A5, C6, T10, C11	CH ₃ of <i>t</i> -Bu-NC	Vanderwaals	
2a	G4	phenyl attached to Pt	Arene-hydrogen	
	G6	phenyl attached to Pt	Vanderwaals	
2b	G2, G4, G6	CH ₂ of benzyl	Vanderwaals	
	G6	Nitrogen of benzyl-NC	H.B	
2c	A5, G4, C11	Nitrogen of cyclohexyl-NC	H.B	
	C11	carbon of isocyanide	Vanderwaals	