Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

## Supplementary information

## Synthesis of Hierarchical ZSM-48 Nano-Zeolites

Amir Astafan<sup>a,b,c</sup>, Mohammed Amine Benghalem<sup>c</sup>, Laure Michelin<sup>a,b</sup>, Severinne Rigolet<sup>a,b</sup>, Joël Patarin<sup>a,b</sup>, Ludovic Pinard<sup>c,\*</sup> and T. Jean Daou<sup>a,b\*\*</sup>

<sup>a.</sup> Université de Haute Alsace (UHA), CNRS, Axe Matériaux à Porosité Contrôlée (MPC), Institut de Science des Matériaux de Mulhouse (IS2M), UMR 7361, 68093 Mulhouse, France

b. Université de Strasbourg, France

*c.* Institut de Chimie des Milieux et Matériaux de Poitiers, UMR 7285 CNRS, 86073 Poitiers Cedex 9 France

\* Corresponding author: \* <u>ludovic.pinard@univ-poitiers.fr</u>; \*\* <u>jean.daou@uha.fr</u>, Telephone number: \* + 33 5 49 45 39 05, \*\*+33 3 89 33 67 39, Fax number: \*\*+33 3 89 33 68 85



Fig.SI.1. : Ethanol conversion (a) and yield into ethylene(b), diethyl-ether (c) and hydrocarbons  $(C_3+)$  (d) as a function of time-on-stream, for the \*MRE-type zeolites with different Si/Al molar ratio :  $S_{0.016-7}(\bullet)$ ,  $S_{0.012-4}(\bullet)$ ,  $S_{0.012-7}(\circ)$  and  $S_{0.01-7}(\Box)$ .

Note that the mass yield of a certain product (or products group) is given by the following equation:

 $Y_j = \frac{\sum_j a_j}{\sum_j a_i}$ 

 $\vec{i}$ , Yi, product or group of product mass yield (wt. %), aj : product or group of products GC peak area, ai: all the GC peak areas



Fig. SI. 2 Ethanol transformation at 350 °C and 30 bar: Ethanol conversion (a), weight yields of  $C_2H_4$ , DEE (diethyl ether) and  $C_{3+}$  hydrocarbons after 2 h and 20 h of reaction, for the \*MRE-type zeolites  $S_{0.012-4}$ , \*BEA-type nanosponges zeolites [1,2], MFI-type zeolite with 2 different frameworks Si/Al molar ratio (40 and 140) [3] catalysts.

| Samples &                       | Structure                         | S <sub>BET</sub> <sup>b</sup>      | V <sub>micro</sub> ¢                | V <sub>meso</sub> d                 | d <sub>meso</sub> | A 1. /.                |
|---------------------------------|-----------------------------------|------------------------------------|-------------------------------------|-------------------------------------|-------------------|------------------------|
| Kelerences                      | agent                             | (m <sup>2</sup> .g <sup>-1</sup> ) | (cm <sup>3</sup> .g <sup>-1</sup> ) | (cm <sup>3</sup> .g <sup>-1</sup> ) | (nm)              | Application            |
| S <sub>0.01-4</sub> (our work)  |                                   | 720                                | 0.24                                | 0.70                                | 6                 | Ethonal                |
| S <sub>0.012-4</sub> (our work) |                                   | 770                                | 0.24                                | 0.74                                | 6                 | Ethanoi                |
| S <sub>0.01-7</sub> (our work)  | N <sub>4-phe</sub> <sup>e</sup>   | 580                                | 0.18                                | 0.46                                | 8                 | transformation         |
| S <sub>0.012-7</sub> (our work) |                                   | 600                                | 0.20                                | 0.54                                | 8                 | Into                   |
| S <sub>0.016-7</sub> (our work) |                                   | 670                                | 0.20                                | 0.60                                | 8                 | hydrocarbons           |
| Conventional ZSM-48 [4]         | HMBr <sup>f</sup>                 | 288                                | 0.16                                | 0.08                                | -                 |                        |
| Hierarchical ZSM-48             |                                   | 373                                | 0.14                                | 0.21                                | 2-4               | Non                    |
| (Nano-stick crystals) [4]       | TPDAC <sup>g</sup>                |                                    |                                     |                                     |                   | application            |
| Hierarchical ZSM-48             | $+ HMBr^{f}$                      | 417                                | 0.13                                | 0.31                                | 2-4               | mentioned              |
| (Nano-stick crystals) [4]       |                                   |                                    |                                     |                                     |                   |                        |
| Conventional ZSM-48 [5,6]       | HMBr <sup>f</sup>                 | 160                                | 0.12                                | 0                                   | -                 | T                      |
| Hierarchical ZSM-48             | C <sub>18</sub> -N <sub>6</sub> - | 380                                | 0.08                                | 0.27                                | 4.7               | Isopropylation         |
| (Nanosponges) [5,6]             | $C_{18}{}^h \\$                   |                                    |                                     |                                     |                   | of benzene             |
| Conventional ZSM-48 [7]         | HDA <sup>i</sup>                  | 301                                | n.d.                                | n.d.                                | -                 | C <sub>4</sub> -olefin |

Table SI.1. The structure directing agent used for the synthesis of \*MRE-type zeolites, the textural properties of the calcined \*MRE-type zeolite samples and their applications (a comparison between our results and some results found in the literature).

<sup>a</sup> Deduced from XRD analysis

<sup>b</sup>Specific surface area measured by BET.

<sup>c</sup> micropore volume calculated by using *t*-plot method.

<sup>d</sup> Mesopore volume = $V_{total}$ - $V_{micro}$  ( $V_{total}$ : determined from the adsorbed volume at p/p<sub>0</sub> = 0.90).

 ${}^{e}N_{4-phe}: (C_{22}H_{45}N^{+}(CH_{3})_{2}C_{6}H_{12}N^{+}(CH_{3})_{2}CH_{2}pC_{6}H_{4}CH_{2}N^{+}(CH_{3})_{2}C_{6}H_{12}N^{+}(CH_{3})_{2}C_{22}H_{45}(Br^{-})_{2}(Cl^{-})_{2})$ 

<sup>f</sup>HMBr : hexamethonium bromide

 ${}^{\tt g}\,{\tt TPDAC}: [3-(trimethoxysilyl) propyl] \ dodecyl dimethyl ammonium \ chloride$ 

 $^{h}C_{18}-N_{6}-C_{18}:(C_{22}H_{45}N^{+}(CH_{3})_{2}C_{6}H_{12}N^{+}(CH_{3})_{2}CH_{2}C_{6}H_{4}CH_{2}N^{+}(CH_{3})_{2}C_{6}H_{12}N^{+}(CH_{3})_{2}C_{1}H_{2}N^{+}(CH_{3})_{2}C_{2}H_{45}(Br^{-})_{2}(Cl^{-})_{4})$ 

<sup>i</sup> HDA: hexamethylenediamine

n.d.: not determined

| Table SI. 2. Acidic properties of MFI and *BEA-type zeolite catalysts [1-3] |         |          |          |  |  |  |  |  |
|-----------------------------------------------------------------------------|---------|----------|----------|--|--|--|--|--|
|                                                                             | MFI(40) | MFI(140) | *BEA(NS) |  |  |  |  |  |
| $[PyH^+](\mu mol.g^{-1})$                                                   | 297     | 91       | 130      |  |  |  |  |  |
| $[PyL](\mu mol.g^{-1})$                                                     | 47      | 6        | 176      |  |  |  |  |  |

References:

1 A. Astafan, M.A. Benghalem, Y. Pouilloux, J. Patarin, N. Bats, C. Bouchy, T.J. Daou, L. Pinard, *J. Catal.*, 2016, **336**, 1-10.

A. Astafan, Y. Pouilloux, J. Patarin, N. Bats, C. Bouchy, T.J. Daou, L. Pinard, New J. Chem., 2016, 40, 4335-4343.

3 F.F. Madeira, K, Ben tayeb , L. Pinard, S. Maury, N. Cadran, Appl. Catal. A. Gen., **2012**, 443-444, 171-180.

4 X. Liu, X. Wang, Y. Wang, Y. Gong, T. Dou, *Advanced Materials Research*, 2012, **503-504**, 756-759.

5 W. Kim, J.C. Kim, J. Kim, Y. Seo, R. Ryoo, ACS Catal., 2013, **3**, 192-195.

6 S. Lee, C. Jo, R. Ryoo, J. Mater. Chem. A, 2017, 5, 11086-11093.

7 G. Zhao, J. Teng, Y. Zhang, Z. Xie, Y. Yue, Q. Chen, Y. Tang, Applied Catalysis A: General, 2006, 167-174.