Electronic Supplementary Information for New Journal of Chemistry

Facile One-Pot Nanocatalysts Encapsulation of Palladium-NHC

Complexes for Aqueous Suzuki–Miyaura Couplings

Chao Chen,^{a*} Qing Zheng,^a Shengliang Ni,^a and Hangxiang Wang^b*

 ^a College of Life Sciences, Huzhou University, Huzhou, 313000, China. E-mail: chenc@zjhu.edu.cn
^bThe First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China. E-mail: wanghx@zju.edu.cn

Table S1 X-ray crystallographic data for palladium-NHC complexes 1b, 2b and 3b
Fig. S1 Water solution of palladium-NHC loaded DSPE-PEG ₂₀₀₀ nanoparticles2
Fig. S2 Uv spectral of palladium-NHC (1b , 2b , and 3b) and the corresponding nanocatalysts (NCs 1b -NC 2b -NC, and 3b -NC nanoparticles, and 3b -NC after recycling from the Suzkui–Miyaura reaction mixture.
Fig. S3 Aqueous Suzuki-Miyaura coupling reaction of 4-bromotoluene with phenylboronic acid catalyzed by 3b (a), 3b -NC without TBAB (b), 3b -NC with TBAB (c)
Synthesis and characterization of 1a-3a and 1b-3b
¹ H and ¹³ C NMR data of 4a-4q
¹ H and ¹³ C NMR Spectrum of 1a-4q 10
References of the reported triphenylamine derivatives

	1b•CH ₃ CN	2b	3b
Formula	$C_{19}H_{19}ClF_6N_5PPdC_{21}H_{18}ClF_6N_4PPdC_{18}H_{19}ClF_6N_5PPd$		
Fw	604.21	613.21	592.20
crystal system	Monoclinic	Monoclinic	Monoclinic
space group	P2(1)/c	P2(1)/c	P2(1)/n
<i>a</i> , Å	10.8222(10)	9.5629(5)	8.2397(11)
b, Å	13.3189(12)	26.8142(9)	13.5183(13)
<i>c</i> , Å	16.9614(16)	10.2793(4)	21.343(2)
a, deg.	90	90	90
β , deg.	97.867(2)	116.742(6)	100.006(2)
γ, deg.	90	90	90
$V, \text{\AA}^3$	2421.8(4)	2353.91	2341.1(5)
Ζ	4	4	4
$D_{\text{calcd}}, \text{Mg/m}^3$	1.657	1.730	1.680
Refls collected	12130	14859	11213
Refls independent (R_{int})	4270 (0.0261)	4141 (0.0451)	4117 (0.0403)
Goodness-of-fit on F^2	1.084	1.045	1.089
$R (I > 2\sigma I)$	0.0454, 0.1251	0.0435, 0.1034	0.0445, 0.0981
R (all data)	0.0613, 0.1386	0.0533, 0.1105	0.0755, 0.1147

Table S1. X-ray crystallographic data for palladium-NHC complexes 1b, 2b and 3b.

Fig. S1. Water solution of 1b-NC, 2b-NC, and 3b-NC.

Fig. S2. Uv spectral of **1b** and **1b**-NC (a), **2b** and **2b**-NC (b), **3b** and **3b**-NC (c), and **3b**-NC initial and after recycling from the Suzkui-Miyaura reaction mixture (d).

Fig. S3. Aqueous Suzuki-Miyaura coupling reaction of 4-bromotoluene and phenylboronic acid catalyzed by 0.1 mol% **3b** (a), **3b**-NC without TBAB (b), and **3b**-NC with TBAB (c) at 60 °C for 3 h in water.

Synthesis and characterization of 1a -1b and 2a-2b

[HL1](PF₆), **1a**

A solution of *N*-(2-pyridineyl)imidazole (1.45 g, 10 mmol) and benzyl chloride (1.51 g, 12 mmol) in acetonitrile (20 mL) was refluxed overnight. The solvent was removed and the residue was redissolved in water (25mL), and then a saturated NH₄PF₆ aqueous solution (20 mL) was added dropwise. The resulting precipitate was collected, washed with water and dried. Yield: 3.43 g, 90%. Anal. Calcd for C₁₅H₁₄F₆N₃P: C, 47.25; H, 3.70; N, 11.02. Found: C, 47.15; H, 3.81; N, 11.26. ¹H NMR (400 MHz, DMSO-*d*₆): δ 10.27 (s, imidazole acidic CH, 1H), 8.66 (dd, *J* = 4.8 and 2.0 Hz, pyridine CH, 1H), 8.55 (t, *J* = 6.0 Hz, imidazole CH, 1H), 8.22 (dt, *J* = 8.0 and 2.0 Hz, pyridine CH, 1H), 8.05-8.02 (m, pyridine and imidazole CH, 2H), 7.65 (dd, *J* = 8.0 and 4.8 Hz, pyridine CH, 1H), 7.54-7.52 (m, phenyl CH, 2H), 7.48-7.41 (m, phenyl CH, 3H), 5.55 (s, CH₂, 2H). ¹³C NMR (100 MHz, DMSO-*d*₆): δ 149.0, 146.4, 140.5, 135.1, 134.4, 129.0, 128.9, 128.4, 125.2, 123.5, 119.8, 114.3, 52.5.

[HL2](PF₆), 2a

According to the same procedure as for **1a**, **2a** was obtained by the reaction of 1-(2-pyridyl)benzimidazole (1.51 g, 10 mmol) with benzyl chloride (1.51 g, 12 mmol) and a subsquently anion exchang reaction with NH₄PF₆. Yield: 3.7 g, 85%. Anal. Calcd for C₁₉H₁₆F₆N₃P: C, 52.91; H, 3.74; N, 9.74. Found: C, 52.43; H, 3.91; N, 9.62. ¹H NMR (400 MHz, DMSO-*d*₆): δ 10.71 (s, benzimidazole acidic CH,1H), 8.80 (d, *J* = 4.0 Hz, pyridine CH, 1H), 8.49 (d, *J* = 7.6 Hz, benzimidazole CH, 1H), 8.32 (t, *J* = 6.4 Hz, pyridine CH, 1H), 8.11 (d, *J* = 8.0 Hz, pyridine CH, 1H), 8.01 (d, *J* = 7.6 Hz, benzimidazole CH, 1H), 7.78-7.83 (m, pyridine and imidazole CH, 3H), 7.66-7.64 (m, phenyl CH, 2H), 7.46-7.40 (m, phenyl CH, 3H), 5.90 (s, CH₂, 2H). ¹³C NMR (100 MHz, DMSO-*d*₆): δ 149.9, 147.8, 143.2, 141.0, 134.0, 131.7, 130.3, 129.4, 129.3, 128.9, 128.3, 127.7, 125.6, 117.7, 116.6, 114.7, 51.0.

[HL3](PF₆), 3a

3a was prepared similarly as for **1a**, *N*-mesitylimidazole and 2-chloropyrimidine was used as

reaction substrates. Yield: 3.4 g, 84%. Anal. Calcd for $C_{16}H_{17}F_6N_4P$: C, 46.84; H, 4.18; N, 13.66; Found: C, 46.34; H, 3.88; N, 13.59. ¹H NMR (400 MHz, DMSO-*d*₆): δ 10.51 (s, imidazole acid CH, 1H), 9.12 (d, *J* = 4.8 Hz, pyrimidine CH, 2H), 8.81, 8.21 (both s, imidazole CH, 2H), 7.84 (t, *J* = 4.8 Hz, pyrimidine CH, 1H), 7.21(s, Mes CH, 2H), 2.37(s, Mes CH₃, 3H), 2.14(s, Mes CH₃, 6H). ¹³C NMR (100 MHz, DMSO-*d*₆): δ 160.5, 152.8, 140.9, 137.6, 134.8, 131.6, 129.7, 125.8, 123.1, 120.5, 21.1, 17.5.

 $[Pd(L1)(CH_3CN)CI](PF_6)$ (1b)

A mixture of HL1(PF₆) (381 mg, 1.0 mmol), Ag₂O (116 mg, 0.5 mmol) in 10 mL of CH₃CN was stirred at 50 °C for 4 h. After the mixture was cooled to room temperature, [Pd(CH₃CN)₂]Cl₂ (260 mg, 1.0 mmol) was added to the solution, and the solution was stirred at room temperature for another 2 h. Then, the mixture was filtered through Celite, and all volatiles were evaporated under reduced pressure. The yellow residue was dissolved in CH₃CN, and recrystallization by slow addition of Et₂O into its CH₃CN solution gave **1b** as a yellow solid, 439 mg, 78%. Anal. Calcd for C₁₇H₁₆ClF₆N₄PPd: C, 36.26; H, 2.86; N, 9.95. Found: C, 36.88; H, 3.06; N, 9.83. ¹H NMR (CD₃CN): 8.57 (s, pyridine CH, 1H), 8.34 (t, *J* = 7.6 Hz, pyridine CH, 1H), 7.90 (s, imidazole CH, 1H), 7.84 (d, *J* = 7.6 Hz, pyridine CH, 1H), 7.58 (t, *J* = 6.4 Hz, pyridine CH, 1H), 7.42 (m, phenyl, 5H), 7.27 (s, imidazole CH, 1H), 5.97 (s, CH₂, 2H), 2.19 (s, CH₃CN, 3H). ¹³C NMR (dmso-*d*₆): 151.3 (Pd–C), 147.7, 146.7, 144.3, 136.5, 129.3, 129.0, 128.7, 128.2, 125.3, 123.9, 119.1, 113.2, 52.9, 1.7.

 $[Pd(L2)(CH_3CN)CI](PF_6)$ (2b)

2b was prepared by a procedure analogous to what was used for **1b** and was isolated as a yellow solid. Yield: 472 mg, 77%. Anal. Calcd for $C_{21}H_{18}ClF_6N_4PPd$: C, 41.13; H, 2.96; N, 9.14. Found: C, 41.28; H, 2.65; N, 8.93. ¹H NMR (dmso-*d*₆): 8.59-8.55 (m, pyridine CH, 2H), 8.47-8.43 (m, pyridine and benzimidazole CH, 2H), 7.73-7.69 (m, pyridine and benzimidazole CH, 2H), 7.61 (t, *J* = 7.6 Hz, pyridine CH, 1H), 7.56-7.48 (m, pyridine and phenyl CH, 3H), 7.38-7.29 (m, phenyl CH, 3H), 6.34 (s, CH₂, 2H), 2.07 (s, CH₃CN, 3H). ¹³C NMR (dmso-*d*₆): 151.7 (Pd–C), 146.7, 144.3, 135.1, 133.8, 129.7, 129.0, 128.3, 127.6, 126.9, 126.4, 123.3, 118.5, 114.0, 113.9, 113.6, 50.7, 1.51.

 $[Pd(L3)(CH_3CN)CI](PF_6)$ (3b)

3b was prepared by a procedure analogous to what was used for **1b** and **2b** and was isolated as a yellow solid. Yield: 387 mg, 65%. Anal. Calcd for $C_{18}H_{19}ClF_6N_5PPd$: C, 36.51; H, 3.23; N, 11.83. Found: C, 36.41; H, 3.10; N, 11.90. ¹H NMR (dmso-*d*₆): 9.18 (s, pyrimidine CH, 1H), 8.73 (s, pyrimidine CH, 1H), 8.46 (s, imidazole CH, 1H), 7.79 (t, *J* = 5.2 Hz, pyrimidine CH, 1H), 7.69 (s, imidazole CH, 1H), 7.01 (s, Mes CH, 2H), 2.31 (s, Mes CH₃, 3H), 2.06 (s, CH₃CN, 3H), 2.05 (s, Mes CH₃, 6H), ¹³C NMR (dmso-*d*₆): 162.3, 156.2 (Pd–C), 149.1, 139.3, 134.8, 134.5, 128.9, 126.5, 120.9, 119.1, 118.5, 21.1, 17.8, 1.54.

¹H and ¹³C NMR data of 4a-4b

¹H NMR (400 MHz, CDCl₃): δ 7.52 (d, *J* = 8.8 Hz, phenyl CH, 6H), 7.47 (d, *J* = 8.8 Hz, phenyl CH, 6H), 7.20 (d, *J* = 8.8 Hz, phenyl CH, 6H), 6.97 (d, *J* = 8.8 Hz, phenyl CH, 6H), 3.85 (s, CH₃, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 158.9, 146.4, 135.2, 133.3, 127.7, 127.4, 124.4, 114.2, 55.4. ¹

¹H NMR (400 MHz, CDCl₃): δ 7.52 (d, J = 8.8 Hz, phenyl CH, 6H), 7.34 (t, J = 8.0 Hz, phenyl CH, 3H), 7.22 (d, J = 8.8 Hz, phenyl CH, 6H), 7.18 (d, J = 8.0 Hz, phenyl CH, 3H), 7.12 (s, phenyl CH, 3H), 6.87 (d, J = 8.0 Hz, phenyl CH, 3H), 3.86 (s, CH₃, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 160.0, 146.9, 142.1, 135.5, 129.8, 128.0, 124.4, 119.3, 112.5, 112.3, 55.3.²

¹H NMR (400 MHz, CDCl₃): δ 7.47-7.45 (m, phenyl CH, 6H), 7.36 (m, phenyl CH, 3H), 7.27-7.28 (m, phenyl CH, 3H), 7.21-7.23 (m, phenyl CH, 6H), 6.96-7.04 (m, phenyl CH, 6H), 3.83 (s, CH₃, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 156.5, 146.5, 132.7, 130.7, 130.3, 128.3, 123.7, 120.9, 111.2, 56.5.

¹H NMR (400 MHz, CDCl₃): δ 7.52 (t, J = 8.8 Hz, phenyl CH, 12H), 7.45 (d, J = 8.8 Hz, phenyl CH, 6H), 7.22 (d, J = 8.8 Hz, phenyl CH, 6H), 1.36 (s, C(CH₃)₃, 27H). ¹³C NMR (100 MHz, CDCl₃): δ 149.8, 146.7, 137.8, 135.4, 127.7, 126.4, 125.7, 124.4, 34.5, 31.4.

¹H NMR (400 MHz, CDCl₃): δ 7.49 (d, J = 8.4 Hz, phenyl CH, 12H), 7.22 (d, J = 8.4 Hz, phenyl CH, 6H), 7.20 (d, J = 8.4 Hz, phenyl CH, 6H), 2.63 (t, J = 7.6 Hz, CH₂, 6H), 1.67-1.63 (m, CH₂, 6H), 1.36-1.33 (m, CH₂CH₂, 12H), 0.90 (t, J = 6.4 Hz, CH₃, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 146.7, 141.7, 138.0, 135.6, 128.8, 127.7, 126.6, 124.4, 35.6, 31.6, 31.2, 22.6, 14.1.

¹H NMR (400 MHz, CDCl₃): δ 8.03 (d, J = 8.4 Hz, phenyl CH, 6H), 7.69 (d, J = 8.4 Hz, phenyl CH, 6H), 7.59 (d, J = 8.4 Hz, phenyl CH, 6H), 7.27 (d, J = 8.4 Hz, phenyl CH, 6H), 2.64 (s, CH₃, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 197.7, 147.3, 145.0, 135.6, 134.6, 129.0, 128.2, 126.7, 124.6, 26.7.

¹H NMR (400 MHz, CDCl₃): δ 10.05 (s, C(O)H, 3H), 7.95 (d, J = 8.0 Hz, phenyl CH, 6H), 7.76 (d, J = 8.0 Hz, phenyl CH, 6H), 7.61 (d, J = 8.4 Hz, phenyl CH, 6H), 7.28 (d, J = 8.8 Hz, phenyl CH, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 191.8, 147.5, 146.3, 135.0, 134.5, 130.4, 1287.4, 127.1, 124.7.

¹H NMR (400 MHz, CDCl₃): δ 8.10 (d, J = 8.4 Hz, phenyl CH, 6H), 7.66 (d, J = 8.4 Hz, phenyl CH, 6H), 7.57 (d, J = 8.4 Hz, phenyl CH, 6H), 7.25 (d, J = 8.4 Hz, phenyl CH, 6H), 3.94 (s, CH₃, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 167.0, 147.3, 144.8, 134.6, 130.2, 128.6, 128.2, 126.5, 124.6, 52.1.

¹H NMR (400 MHz, CDCl₃): δ 7.70 (q, J = 8.8 Hz, phenyl CH, 12H), 7.55 (d, J = 8.8 Hz, phenyl CH, 6H), 7.26 (d, J = 8.8 Hz, phenyl CH, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 147.5, 144.7, 134.0, 132.7, 128.3, 127.2, 124.7, 119.0, 110.6.

NC

¹H NMR (400 MHz, CDCl₃): δ 7.87 (s, phenyl CH, 3H), 7.81 (d, J = 8.0 Hz, phenyl CH, 3H), 7.61 (d, J = 7.6 Hz, phenyl CH, 3H), 7.55 (t, J = 7.6 Hz, phenyl CH, 3H), 7.51 (d, J = 8.8 Hz, phenyl CH, 6H), 7.26 (d, J = 8.8 Hz, phenyl CH, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 147.4, 141.7, 133.7, 131.0, 130.4, 130.3, 1297, 128.1, 124.7, 118.9, 113.1.

¹H NMR (400 MHz, CDCl₃): δ 8.46 (s, phenyl CH, 3H), 8.19 (d, *J* = 8.0 Hz, phenyl CH, 3H), 7.92 (d, *J* = 8.0 Hz, phenyl CH, 3H), 7.63-7.58 (m, phenyl CH, 9H), 7.29 (d, *J* = 8.8 Hz, phenyl CH, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 148.8, 147.5, 142.1, 133.6, 132.5, 129.8, 128.3, 124.8, 121.8, 121.5.

¹H NMR (400 MHz, CDCl₃): δ 7.51 (d, J = 8.8 Hz, phenyl CH, 6H), 7.42-7.35 (m, phenyl CH, 6H), 7.30-7.22 (m, phenyl CH, 9H), 7.04-6.99 (m, phenyl CH, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 163.3(d, J = 245.5 Hz), 147.1, 142.8(d, J = 6.8 Hz), 134.6, 130.2(d, J = 7.9 Hz), 128.0, 124.5, 122.3(d, J = 3.4 Hz), 113.7(d, J = 20.2 Hz), 113.5(d, J = 22.1 Hz).

¹H NMR (400 MHz, CDCl₃): δ 7.51 (d, J = 8.4 Hz, phenyl CH, 6H), 7.48 (d, J = 8.4 Hz, phenyl CH, 6H), 7.39 (d, J = 8.4 Hz, phenyl CH, 6H), 7.22 (d, J = 8.4 Hz, phenyl CH, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 146.7, 139.0, 134.6, 133.0, 128.9, 127.9, 127.8, 124.5.

¹H NMR (400 MHz, CDCl₃): δ 7.57 (d, J = 8.4 Hz, phenyl CH, 6H), 7.54 (d, J = 8.4 Hz, phenyl CH, 6H), 7.48 (d, J = 8.4 Hz, phenyl CH, 6H), 7.24 (d, J = 8.4 Hz, phenyl CH, 6H), 6.78-6.71 (m, CH, 3H) 5.80 (d, J = 17.6 Hz, CH₂, 3H), 5.27 (d, J = 10.8 Hz, CH₂, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 146.8, 139.9, 136.5, 136.3, 135.2, 127.7, 126.7, 126.7, 124.5, 113.7.

¹H NMR (400 MHz, CDCl₃): δ 8.81 (d, J = 8.0 Hz, phenanthrenyl CH, 3H), 8.75 (d, J = 8.0 Hz, phenanthrenyl CH, 3H), 8.13 (d, J = 8.0 Hz, phenanthrenyl CH, 3H), 7.79 (d, J = 8.0 Hz, phenanthrenyl CH, 3H), 7.79 (d, J = 8.0 Hz, phenanthrenyl CH, 3H), 7.71-7.60 (m, phenanthrenyl CH, 12H), 7.57 (d, J = 8.4 Hz, phenyl CH, 6H), 7.48 (d, J = 8.4 Hz, phenyl CH, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 147.0, 138.4, 135.4, 131.7, 131.2, 131.1, 130.8, 129.9, 128.6, 127.5, 127.0, 126.9, 126.5, 126.5, 126.5, 124.1, 123.0, 122.6.

¹H NMR (400 MHz, CDCl₃): δ 7.50 (t, J = 8.4 Hz, phenyl CH, 12H), 7.31 (d, J = 8.4 Hz, phenyl CH, 6H), 7.21 (d, J = 8.4 Hz, phenyl CH, 6H), 2.52 (s, CH₃, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 146.7, 137.4, 137.1, 135.0, 127.6, 127.1, 127.0, 124.5, 16.0.

¹H NMR (400 MHz, CDCl₃): δ 8.01 (d, J = 8.4 Hz, phenyl CH, 6H), 7.77 (d, J = 8.8 Hz, phenyl CH, 6H), 7.58 (d, J = 8.8 Hz, phenyl CH, 6H), 7.29 (d, J = 8.4 Hz, phenyl CH, 6H), 3.10 (s, CH₃, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 147.6, 145.8, 138.8, 134.0, 128.5, 128.0, 127.4, 124.7, 44.6.

¹H NMR (400 MHz, CDCl₃): δ 7.53 (d, J = 8.4 Hz, phenyl CH, 6H), 7.26-7.25 (m, thiophenyl CH, 6H), 7.15 (d, J = 8.0 Hz, phenyl CH, 6H), 7.09-7.07 (m, thiophenyl CH, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 146.5, 144.1, 129.3, 128.1, 126.9, 124.4, 124.3, 122.5.

¹H and ¹³C NMR Spectrum of 1a-4q

¹³C NMR of HL1](PF₆), 1a

¹³C NMR of [HL3](PF₆), 3a

¹³C NMR of [Pd(L1) (CH₃CN)Cl](PF₆), 1b

¹³C NMR of [Pd(L2) (CH₃CN)Cl](PF₆), 2b

¹³C NMR of 4a

¹³C NMR of 4b

¹³C NMR of 4e

¹³C NMR of 4f

¹³C NMR of 4h

¹³C NMR of 4k

¹³C NMR of 4l

¹³C NMR of 4n

¹³C NMR of 4p

¹³C NMR of 4r

References of the reported triphenylamine derivatives

- 1. C. Quinton, V. Alain-Rizzo, C. Dumas-Verdes, F. Miomandre, G. Clavier, P. Audebert, *RSC Advances*, 2014, **4**, 34332.
- 2. M. L. Rao, D. Banerjee, R. J. Dhanorkar, Tetrahedron Lett., 2010, 51, 6101.
- B. Jedrzejewska, M. Gordel, J. Szeremeta, P. Krawczyk, M. Samoć, J. Org. Chem., 2015, 80, 9641.
- 4. P. Wu, M. Jiang, X. Hu, J. Wang, G. He, Y. Shi, L. Yang, L. Wei, J. Wang, RSC Advances, 2016, 6, 27944.
- 5. D. Cvejn, E. Michail, I. Polyzos, N. Almonasy, O. Pytela, M. Klikar, T. Mikysek, V. Giannetas, M. Fakis and F. Bureš, *J. Mater. Chem. C*, 2015, **3**, 7345.
- Z. Li, Z. Wu, W. Fu, P. Liu, B. Jiao, D. Wang, G. Zhou, X. Hou, J. Phys. Chem. C, 2012, 116, 20504.
- 7. H, Yasushi, I, Takahiro, Jpn. Kokai Tokkyo Koho, JP 2012126813, 2012.
- 8. T, Yuji , Jpn. Kokai Tokkyo Koho, JP 2015002001, 2015.
- 9. J. T. Kearns, M. E. Roberts, J. Mater. Chem., 2012, 22, 25447.