Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

SUPPLEMENTARY MATERIAL

Figure S1. Distribution diagram of $M_pL_qH_r$ species as a function of pH in the Fe²⁺/8-HQA system, in KCl_(aq) at *I* = 0.2 mol dm⁻³ and at *T* = 298.15 K. c_{8-HQA} = 0.5 mmol dm⁻³, $c_{Fe^{2+}}$ = 0.5 mmol dm⁻³.

Figure S2. Distribution diagram of $M_pL_qH_r$ species as a function of pH in the Fe³⁺/8-HQA system, in KCl_(aq) at I = 0.2 mol dm⁻³ and at T = 298.15 K. $c_{8-HQA} = 0.5$ mmol dm⁻³, $c_{Fe^{3+}} = 0.5$ mmol dm⁻³.

Figure S3. Distribution diagram of $M_pL_qH_r$ species as a function of pH in the Fe³⁺/8-HQA system, in KCl_(aq) at I = 0.2 mol dm⁻³ and at T = 298.15 K. $c_{8-HQA} = 1.5$ mmol dm⁻³, $c_{Fe^{3+}} = 0.5$ mmol dm⁻³, considering the ML₃ species in the model.

Figure S4. Distribution diagram of $M_pL'_qH_r$ species as a function of pH in the Fe²⁺/EDTA system, in KCl_(aq) at *I* = 0.2 mol dm⁻³ and at *T* = 298.15 K. c_{EDTA} = 0.5 mmol dm⁻³, $c_{Fe^{2+}}$ = 0.5 mmol dm⁻³.

Figure S5. Distribution diagram of $M_pL'_qH_r$ species as a function of pH in the Fe³⁺/EDTA system, in KCl_(aq) at *I* = 0.2 mol dm⁻³ and at *T* = 298.15 K. c_{EDTA} = 0.5 mmol dm⁻³, $c_{Fe^{3+}}$ = 0.5 mmol dm⁻³.

Figure S6. Distribution diagram of $M_pL_qL'_{q'}H_r$ species as a function of pH in the Fe²⁺/8-HQA/EDTA system, in KCl_(aq) at I = 0.2 mol dm⁻³ and at T = 298.15 K. $c_{8-HQA} = 0.5$ mmol dm⁻³, $c_{EDTA} = 0.5$ mmol dm⁻³, $c_{Fe^{2+}} = 0.5$ mmol dm⁻³. L = 8-HQA, L' = EDTA.

Figure S7. Distribution diagram of $M_pL_qL'_{q'}H_r$ species as a function of pH in the Fe³⁺/8-HQA/EDTA system, in KCl_(aq) at I = 0.2 mol dm⁻³ and at T = 298.15 K. $c_{8-HQA} = 0.5$ mmol dm⁻³, $c_{EDTA} = 0.5$ mmol dm⁻³, $c_{Fe^{3+}} = 0.5$ mmol dm⁻³. L = 8-HQA, L' = EDTA.

Figure S8. Distribution diagram of $M_pL_qL'_{q'}H_r$ species as a function of pH in the Fe²⁺/8-HQA/EDTA system, in KCl_(aq) at I = 0.2 mol dm⁻³ and at T = 298.15 K. $c_{8-HQA} = 1.0$ mmol dm⁻³, $c_{EDTA} = 0.5$ mmol dm⁻³, $c_{Fe^{2+}} = 0.5$ mmol dm⁻³. L = 8-HQA, L' = EDTA.

Figure S9. Distribution diagram of $M_pL_qL'_{q'}H_r$ species as a function of pH in the Fe³⁺/8-HQA/EDTA system, in KCl_(aq) at I = 0.2 mol dm⁻³ and at T = 298.15 K. $c_{8-HQA} = 1.0$ mmol dm⁻³, $c_{EDTA} = 0.5$ mmol dm⁻³, $c_{Fe^{3+}} = 0.5$ mmol dm⁻³. $L \equiv 8$ -HQA, $L' \equiv$ EDTA.

Figure S10. ESR spectra of Fe²⁺/8-HQA system 1:1 $c_L:c_M$ ratios. Experimental conditions: T = 100 K; pH = 7.0, $c_L = c_M = 1.0$ mmol dm⁻³.

Fe	8-HQA	EDTA	Ratio	Fe	8-HQA	EDTA	Ratio
(M)	(L)	(L')	(M:L:L')	(M)	(L)	(L')	(M:L:L')
1.5	1.5		1:1:0	1.5	0.8	0.8	2:1:1
1.2	1.2		1:1:0	1.2	0.6	0.6	2:1:1
1.0	1.0		1:1:0	1.0	0.5	0.5	2:1:1
1.0	1.5		1:1.5:0	1.5	1.5	0.8	2:2:1
0.8	1.2		1:1.5:0	1.2	1.2	0.6	2:2:1
0.6	1.0		1:1.5:0	1.0	1.0	0.5	2:2:1
0.8	1.5		1:2:0	1.5	0.8	1.5	2:1:2
0.6	1.2		1:2:0	1.2	0.6	1.2	2:1:2
0.5	1.0		1:2:0	1.0	0.5	1.0	2:1:2
0.5	1.5		1:3:0	0.8	1.5	1.5	1:2:2
0.4	1.2		1:3:0	0.6	1.2	1.2	1:2:2
1.5	1.5	1.5	1:1:1	0.5	1.0	1.0	1:2:2
1.2	1.2	1.2	1:1:1	0.5	1.5	0.5	1:3:1
1.0	1.0	1.0	1:1:1	0.4	1.2	0.4	1:3:1
1.0	1.5	1.0	1:1.5:1	0.5	0.5	1.5	1:1:3
0.8	1.2	0.8	1:1.5:1	0.4	0.4	1.2	1:1:3
0.6	1.0	0.6	1:1.5:1	1.5	0.5	0.5	3:1:1
1.0	1.0	1.5	1:1:1.5	1.2	0.4	0.4	3:1:1
0.8	0.8	1.2	1:1:1.5	0.5	1.5	1.0	1:3:2
0.6	0.6	1.0	1:1:1.5	0.4	1.2	0.8	1:3:2
1.5	1.0	1.0	1.5:1:1	0.5	1.0	1.5	1:2:3
1.2	0.8	0.8	1.5:1:1	0.4	0.8	1.2	1:2:3
1.0	0.6	0.6	1.5:1:1	1.5	0.5	1.0	3:1:2
0.8	1.5	0.8	1:2:1	1.2	0.4	0.8	3:1:2
0.6	1.2	0.6	1:2:1	1.5	1.0	0.5	3:2:1
0.5	1.0	0.5	1:2:1	1.2	0.8	0.4	3:2:1

Table S1. Experimental details on the concentrations (in mmol dm⁻³) of potentiometric titrations on the Fe/8-HQA/EDTA systems

0.8	0.8	1.5	1:1:2	1.0	0.5	1.5	2:1:3
0.6	0.6	1.2	1:1:2	0.8	0.4	1.2	2:1:3
0.5	0.5	1.0	1:1:2	1.0	1.5	0.5	2:3:1
				0.8	1.2	0.4	2:3:1

Time	Flow	MS	Valve	
(min)	(mL min⁻¹)	Acquisition		
0	0.1		Waste	
0.5	0.1	Х	Waste $ ightarrow$ MS	
0.6	0.02	Х	MS	
4	0.02	Х	MS \rightarrow Waste	
4.1	1		Waste	
5	1		Waste	
5.1	0.2		Waste	
5.5			Waste \rightarrow MS	
5.8			$MS \rightarrow Waste$	
6	0.2		Waste	

Table S2. Experimental details of HESI-HRMS measurements.