Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Electronic Supplementary Information

New insights into the protogenic and spectroscopic properties of commercial tannic acid. The role of gallic acid impurities

G. Ghigo, ^a S. Berto, ^{a †} M. Minella, ^a D. Vione, ^a E. Alladio, ^a V. M. Nurchi, ^b J. Lachowicz, ^b P. G. Daniele.^a

^{a.} Università di Torino, Dipartimento di Chimica, Via Pietro Giuria 7, 10125 Torino, Italy.

+ Corresponding author: silvia.berto@unito.it.

^{b.}Università di Cagliari, Dipartimento di Scienze Chimiche e Geologiche, Cittadella Universitaria, I-09042 Cagliari, Italy.

Experimental and calculated UV-vis spectra

Figure 1a_ESI Left: Experimental and calculated UV-vis spectra of gallic acid at different protonation levels: a) fully protonated; b) mono-deprotonated; c) di-deprotonated. Right: structures used in the TD-DFT calculations.

Table 1a_ESI Calculated electronic transitions of gallic acid.

Excited State 2: Singlet-A' 4.5628 eV 271.73 nm f=0	.0400
Evolution of C_{1} and C_{2} C_{1} C_{2} $C_{$.3145
Excited State S: Singlet-A S.2799 ev 234.62 nm 1-0	.0000
Excited State 4: Singlet-A" 5.5750 eV 222.39 nm f=0	.0011
Excited State 5: Singlet-A" 5.8112 eV 213.35 nm f=0	.0000
Excited State 6: Singlet-A' 5.8228 eV 212.93 nm f=0	.2698
Excited State 7: Singlet-A' 6.1650 eV 201.11 nm f=0	.4987

Table 1b_ESI Calculated electronic transitions of mono-deprotonated gallic acid.

Excited	State	1:	Singlet-Sym	4.5981 eV	V 269.64	nm	f=0.0251
Excited	State	2:	Singlet-Sym	4.7713 eV	V 259.85	nm	f=0.3299
Excited	State	3:	Singlet-Sym	5.1291 eV	V 241.73	nm	f=0.0000
Excited	State	4:	Singlet-Sym	5.4242 eV	V 228.58	nm	f=0.0017
Excited	State	5:	Singlet-Sym	5.4787 eV	V 226.30	nm	f=0.0012
Excited	State	6 :	Singlet-Sym	5.6481 eV	V 219.52	nm	f=0.0009
Excited	State	7:	Singlet-Sym	5.7682 eV	V 214.94	nm	f=0.2831
Excited	State	8:	Singlet-Sym	6.0424 eV	V 205.19	nm	f=0.0456
Excited	State	9:	Singlet-Sym	6.0472 eV	V 205.03	nm	f=0.5056
Excited	State	10:	Singlet-Sym	6.1934 eV	V 200.19	nm	f=0.0004
Excited	State	11:	Singlet-Sym	6.2361 eV	V 198.82	nm	f=0.0019
Excited	State	12:	Singlet-Sym	6.3668 e ^v	V 194.74	nm	f=0.0072
Excited	State	13:	Singlet-Sym	6.4024 e ^v	V 193.65	nm	f=0.1397

Table 1c_ESI Calculated electronic transitions of di-deprotonated gallic acid.

Excited	State	1:	Singlet-Sym	4.2972	eV	288.52	nm	f=0.4855
Excited	State	2:	Singlet-Sym	4.5737	eV	271.08	nm	f=0.0055
Excited	State	3:	Singlet-Sym	4.8210	eV	257.18	nm	f=0.0037
Excited	State	4:	Singlet-Sym	5.2136	eV	237.81	nm	f=0.0000
Excited	State	5:	Singlet-Sym	5.3820	eV	230.37	nm	f=0.0036
Excited	State	6:	Singlet-Sym	5.4272	eV	228.45	nm	f=0.2368
Excited	State	7:	Singlet-Sym	5.5157 (eV	224.79	nm	f=0.0000
Excited	State	8:	Singlet-Sym	5.6093	eV	221.03	nm	f=0.0017
Excited	State	9:	Singlet-Sym	5.7113	eV	217.09	nm	f=0.0002
Excited	State	10:	Singlet-Sym	5.8048	eV	213.59	nm	f=0.0003
Excited	State	11:	Singlet-Sym	6.0435	eV	205.15	nm	f=0.0020
Excited	State	12:	Singlet-Sym	6.0594	eV	204.61	nm	f=0.0032
Excited	State	13:	Singlet-Sym	6.0944	eV	203.44	nm	f=0.0080
Excited	State	14:	Singlet-Sym	6.1240	eV	202.46	nm	f=0.5599
Excited	State	15:	Singlet-Sym	6.2621	eV	197.99	nm	f=0.0009
Excited	State	16:	Singlet-Sym	6.3274	eV	195.95	nm	f=0.0089
Excited	State	17:	Singlet-Sym	6.3671	eV	194.73	nm	f=0.0051
Excited	State	18:	Singlet-Sym	6.5132 (eV	190.36	nm	f=0.1034

Figure 1b_ESI

Left: UV-vis spectra of methyl 3,4,5-trihydroxybenzoate at different protonation levels: a) calculated and experimental spectra of the fully protonated molecule; b) calculated and experimental spectra of the mono-deprotonated one. The experimental spectra reported in Figure 1b are those obtained immediately after the solution preparation, because at these pH values MG is not stable and tends to be transformed into oxidized sub-products¹ (see Figure 3_ESI).

Right: structures used in the TD-DFT calculations.

Figure 2_ESI UV-vis spectra of methyl 3,4,5-trihydroxybenzoate at pH 8.92 after 0, 45 and 90 minutes elapsed from the solution preparation.

Table 2a_ESI Ca	alculated electronic	transitions of	f methyl 3,4,5-	trihydroxybenzoate.
-----------------	----------------------	----------------	-----------------	---------------------

Excited State	1:	Singlet-A	4.4446 eV	278.96 nm	f=0.0338
Excited State	2:	Singlet-A	4.5586 eV	271.98 nm	f=0.3496
Excited State	3:	Singlet-A	5.3401 eV	232.18 nm	f=0.0001
Excited State	4:	Singlet-A	5.5631 eV	222.87 nm	f=0.0012
Excited State	5:	Singlet-A	5.8003 eV	213.76 nm	f=0.2720
Excited State	6:	Singlet-A	5.8274 eV	212.76 nm	f=0.0000
Excited State	7:	Singlet-A	6.1709 eV	200.92 nm	f=0.5200

Table 2b_ESI Calcula	ted e	electronic transitions of	mono-deprote	onated meth	yl 3,4,5-trih [,]	ydroxy	/benzoate
----------------------	-------	---------------------------	--------------	-------------	----------------------------	--------	-----------

Excited	State	1:	Singlet-A	4.0052 eV	309.56 nm	f=0.5307
Excited	State	2:	Singlet-A	4.4301 eV	279.87 nm	f=0.0079
Excited	State	3:	Singlet-A	4.8048 eV	258.04 nm	f=0.0014
Excited	State	4:	Singlet-A	5.1528 eV	240.61 nm	f=0.0004
Excited	State	5:	Singlet-A	5.2459 eV	236.34 nm	f=0.2251
Excited	State	6 :	Singlet-A	5.4092 eV	229.21 nm	f=0.0001
Excited	State	7:	Singlet-A	5.4453 eV	227.69 nm	f=0.0003
Excited	State	8:	Singlet-A	5.5013 eV	225.37 nm	f=0.0002
Excited	State	9:	Singlet-A	5.7291 eV	216.41 nm	f=0.0000
Excited	State	10:	Singlet-A	6.0097 eV	206.31 nm	f=0.0003
Excited	State	11:	Singlet-A	6.1059 eV	203.06 nm	f=0.0783
Excited	State	12:	Singlet-A	6.1503 eV	201.59 nm	f=0.0015
Excited	State	13:	Singlet-A	6.1803 eV	200.61 nm	f=0.4565

Figure 3a_ESI. Right: Structures used in the TD-DFT calculations for the neutral and mono-deprotonated models **a** (left) and **b** (right) of tannic acid.

Table 3a_ESI Calculated electronic transitions of model a of tannic acid.

Excited State	e 1:	Singlet-A	4.3180	eV	287.13	nm	f=0.0590
Excited State	e 2:	Singlet-A	4.3241	eV	286.73	nm	f=0.0429
Excited State	e 3:	Singlet-A	4.4041	eV	281.52	nm	f=0.4829
Excited State	e 4:	Singlet-A	4.5508	eV	272.45	nm	f=0.0232
Excited State	e 5:	Singlet-A	4.5530	eV	272.31	nm	f=0.0513
Excited State	e 6:	Singlet-A	4.7328	eV	261.97	nm	f=0.0070
Excited State	e 7:	Singlet-A	4.7382	eV	261.67	nm	f=0.0002
Excited State	e 8:	Singlet-A	4.9538	eV	250.28	nm	f=0.2386
Excited State	e 9:	Singlet-A	5.2209	eV	237.48	nm	f=0.0001
Excited State	e 10:	Singlet-A	5.3987	eV	229.66	nm	f=0.0002
Excited State	e 11:	Singlet-A	5.6113	eV	220.95	nm	f=0.0011
Excited State	e 12:	Singlet-A	5.7894	eV	214.16	nm	f=0.2477
Excited State	e 13:	Singlet-A	5.8605	eV	211.56	nm	f=0.0000
Excited State	e 14:	Singlet-A	5.9634	eV	207.91	nm	f=0.0030
Excited State	e 15:	Singlet-A	5.9682	eV	207.74	nm	f=0.0026
Excited State	e 16:	Singlet-A	6.0878	eV	203.66	nm	f=0.9636
Excited State	e 17:	Singlet-A	6.1428	eV	201.84	nm	f=0.0012
Excited State	e 18:	Singlet-A	6.1652	eV	201.10	nm	f=0.0068
Excited State	e 19:	Singlet-A	6.2024	eV	199.90	nm	f=0.1088
Excited State	e 20:	Singlet-A	6.2330	eV	198.92	nm	f=0.1841

Excited	State	1:	Singlet-A	3.6138 e	V 343.08	nm	f=0.0400
Excited	State	2:	Singlet-A	3.9093 e	V 317.16	nm	f=0.6789
Excited	State	3:	Singlet-A	4.2875 e	V 289.18	nm	f=0.0605
Excited	State	4:	Singlet-A	4.3154 e	V 287.30	nm	f=0.0114
Excited	State	5:	Singlet-A	4.5067 e	V 275.11	nm	f=0.0008
Excited	State	6:	Singlet-A	4.7870 e	V 259.00	nm	f=0.0013
Excited	State	7:	Singlet-A	4.8293 e	V 256.73	nm	f=0.0033
Excited	State	8:	Singlet-A	4.8463 e	V 255.83	nm	f=0.2181
Excited	State	9:	Singlet-A	4.9567 e	V 250.13	nm	f=0.0534
Excited	State	10:	Singlet-A	5.0263 e	V 246.67	nm	f=0.0052
Excited	State	11:	Singlet-A	5.0716 e	V 244.47	nm	f=0.0025
Excited	State	12:	Singlet-A	5.2307 e	V 237.03	nm	f=0.1798
Excited	State	13:	Singlet-A	5.2412 e	V 236.56	nm	f=0.0004
Excited	State	14:	Singlet-A	5.2733 e	V 235.12	nm	f=0.0150
Excited	State	15:	Singlet-A	5.4912 e	V 225.79	nm	f=0.0005
Excited	State	16:	Singlet-A	5.5383 e	V 223.86	nm	f=0.0004
Excited	State	17:	Singlet-A	5.5661 e	V 222.75	nm	f=0.0000
Excited	State	18:	Singlet-A	5.7184 e	V 216.82	nm	f=0.0048
Excited	State	19:	Singlet-A	5.7382 e	V 216.07	nm	f=0.0010
Excited	State	20:	Singlet-A	5.7569 e	V 215.37	nm	f=0.0044
Excited	State	21:	Singlet-A	5.9096 e	V 209.80	nm	f=0.0016
Excited	State	22:	Singlet-A	5.9382 e	V 208.79	nm	f=0.0079
Excited	State	23:	Singlet-A	6.0484 e	V 204.99	nm	f=0.0648
Excited	State	24:	Singlet-A	6.0539 e	V 204.80	nm	f=0.7609
Excited	State	25:	Singlet-A	6.1155 e	V 202.74	nm	f=0.0011
Excited	State	26:	Singlet-A	6.1454 e	V 201.75	nm	f=0.0285
Excited	State	27:	Singlet-A	6.1610 e	V 201.24	nm	f=0.0725
Excited	State	28:	Singlet-A	6.1761 e	V 200.75	nm	f=0.2398
Excited	State	29:	Singlet-A	6.1983 e	V 200.03	nm	f=0.1196

Table 3c_ESI Calculated electronic transitions of model b of tannic acid.

Excited S	tate	1:	Singlet-A	4.3323 @	∋V	286.19	nm	f=0.0435
Excited S	tate	2:	Singlet-A	4.4207 €	eV	280.46	nm	f=0.2613
Excited S	tate	3:	Singlet-A	4.4403 6	eV	279.23	nm	f=0.3152
Excited S	tate	4:	Singlet-A	4.5465	eV	272.70	nm	f=0.0885
Excited S	tate	5:	Singlet-A	4.6545	eV	266.37	nm	f=0.0088
Excited S	tate	6 :	Singlet-A	4.8566	еV	255.29	nm	f=0.0061
Excited S	tate	7:	Singlet-A	4.9290 €	eV	251.54	nm	f=0.0957
Excited S	tate	8:	Singlet-A	4.9521 @	eV	250.37	nm	f=0.0771
Excited S	tate	9:	Singlet-A	5.3190 €	еV	233.10	nm	f=0.0004
Excited S	tate	10:	Singlet-A	5.3954 @	eV	229.80	nm	f=0.0011
Excited S	tate	11:	Singlet-A	5.6060 @	eV	221.16	nm	f=0.0010
Excited S	tate	12:	Singlet-A	5.7031 @	eV	217.40	nm	f=0.0096
Excited S	tate	13:	Singlet-A	5.7651 @	eV	215.06	nm	f=0.1929
Excited S	tate	14:	Singlet-A	5.7704 @	eV	214.86	nm	f=0.1881
Excited S	tate	15:	Singlet-A	5.7892 €	eV	214.17	nm	f=0.1950
Excited S	tate	16:	Singlet-A	5.8564	eV	211.71	nm	f=0.0086
Excited S	tate	17:	Singlet-A	5.9312 @	eV	209.04	nm	f=0.0554
Excited S	tate	18:	Singlet-A	6.1587 @	eV	201.32	nm	f=0.4795
Excited S	tate	19:	Singlet-A	6.1648 @	eV	201.12	nm	f=0.1035
Excited S	tate 2	20:	Singlet-A	6.1730 €	eV	200.85	nm	f=0.1496
Excited S	tate 2	21:	Singlet-A	6.3602 @	eV	194.94	nm	f=0.0238
Excited S	tate 2	22:	Singlet-A	6.3723 @	eV	194.57	nm	f=0.3125

Excited	State	1:	Singlet-A	3.5902	eV	345.34	nm	f=0.0090
Excited	State	2:	Singlet-A	4.1407	eV	299.43	nm	f=0.5864
Excited	State	3:	Singlet-A	4.3612	eV	284.29	nm	f=0.0386
Excited	State	4:	Singlet-A	4.4412	eV	279.17	nm	f=0.4019
Excited	State	5:	Singlet-A	4.6803	eV	264.91	nm	f=0.0115
Excited	State	6:	Singlet-A	4.6980	eV	263.91	nm	f=0.0114
Excited	State	7:	Singlet-A	4.9393	eV	251.02	nm	f=0.0028
Excited	State	8:	Singlet-A	5.0779	eV	244.16	nm	f=0.0017
Excited	State	9:	Singlet-A	5.1470	eV	240.89	nm	f=0.0003
Excited	State	10:	Singlet-A	5.1859	eV	239.08	nm	f=0.0035
Excited	State	11:	Singlet-A	5.2349	eV	236.84	nm	f=0.0011
Excited	State	12:	Singlet-A	5.2422	eV	236.51	nm	f=0.0033
Excited	State	13:	Singlet-A	5.3117	eV	233.42	nm	f=0.2692
Excited	State	14:	Singlet-A	5.3520	eV	231.66	nm	f=0.0086
Excited	State	15:	Singlet-A	5.4642	eV	226.90	nm	f=0.0016
Excited	State	16:	Singlet-A	5.4965	eV	225.57	nm	f=0.0001
Excited	State	17:	Singlet-A	5.5522	eV	223.31	nm	f=0.0019
Excited	State	18:	Singlet-A	5.6260	eV	220.38	nm	f=0.0002
Excited	State	19:	Singlet-A	5.7263	eV	216.52	nm	f=0.2354
Excited	State	20:	Singlet-A	5.7956	eV	213.93	nm	f=0.0029
Excited	State	21:	Singlet-A	5.8248	eV	212.85	nm	f=0.0016
Excited	State	22:	Singlet-A	6.0045	eV	206.48	nm	f=0.0748
Excited	State	23:	Singlet-A	6.0191	eV	205.99	nm	f=0.0013
Excited	State	24:	Singlet-A	6.1082	eV	202.98	nm	f=0.6094
Excited	State	25:	Singlet-A	6.1610	eV	201.24	nm	f=0.0042
Excited	State	26:	Singlet-A	6.2106	eV	199.63	nm	f=0.0138
Excited	State	27:	Singlet-A	6.2413	eV	198.65	nm	f=0.0193

Figure 3b_ESI Intramolecular H-bonded conformers of models a' (left) and b' (right) of tannic acid.

Calculated pK_as

Table 4a_ESI Total (in au) and relative (in kcal mol⁻¹) electronic and free energies of the species involved in the proton transfer between hydrated complexes of water and gallic acid (see Figure 4a_ESI for the structures).

	E / au	<i>∆E</i> / kcal mol ⁻¹	G / au	⊿G / kcal mol ⁻¹	рК _а
H₂O ∗ 3 H₂O H₃O ⁺ ∗ 3 H₂O	-305.558932 -306.004271		-305.502095 -305.930303		
Neutral Mono Dissociated in COOH	-1027.970399 -1027.515859	5.77	-1027.781279 -1027.339029	8.81	4.7
Bis Dissociated in COOH, 4 Tris Dissociated in COOH, 4, 3	-1027.053435 -1026.573586	10.72 21.66	-1026.886554 -1026.417514	15.23 25.62	9.4 17.0

Figure 4a_ESI Structures of the species involved in the proton transfer between the hydrated complexes of water and gallic acid (see Table 4a_ESI for energies).

Table 4b_ESI Total (in au) and relative (in kcal mol⁻¹) electronic and free energies of the species involved in the proton transfer between the hydrated complexes of water and methyl 3,4,5-trihydroxybenzoate (see Figure 4b_ESI for the structures).

	E / au	⊿E / kcal mol ⁻¹	G / au	⊿G / kcal mol ⁻¹	р <i>К</i> а
H ₂ O * 3 H ₂ O H ₃ O ⁺ * 3 H ₂ O	-305.558932 -306.004271		-305.502095 -305.930303		
Neutral Mono Dissociated in 4	-838.045143 -837.584713	9.47	-837.890524 -837.441622	12.99	7.8

Figure 4b_ESI Structures of the species involved in the proton transfer between the hydrated complexes of water and methyl 3,4,5-trihydroxybenzoate (see Table 4b_ESI for energies).

Table 4c_ESI Total (in au) and relative (in kcal mol⁻¹) electronic and free energies of the species involved in the proton transfer between the hydrated complexes of water and model *a* of tannic acid (see Figure 4c_ESI for the structures).

	E / au	⊿E / kcal mol¹	G / au	⊿G / kcal mol ⁻¹	р <i>К</i> а
H₂O ∗ 3 H₂O H₃O ⁺ ∗ 3 H₂O	-305.558932 -306.004271		-305.502095 -305.930303		
Neutral Mono Dissociated in 4' Mono Dissociated in 3	-1560.445820 -1559.986282 -1559.984103	8.91 10.28	-1560.161243 -1559.714154 -1559.711668	11.85 13.41	6.9 8.1

Figure 4c_ESI Structures of the species involved in the proton transfer between the hydrated complexes of water and model *a* of tannic acid (see Table 4c_ESI for energies).

Table 4d_ESI Total (in au) and relative (in kcal mol⁻¹) electronic and free energies of the species involved in the proton transfer between the hydrated complexes of water and model b of tannic acid (see Figure 4d_ESI for the structures).

	E / au	⊿E / kcal mol ⁻¹	G / au	⊿G / kcal mol ⁻¹	рK _a
H₂O∗ 3 H₂O H₃O ⁺ ∗ 3 H₂O	-305.558932 -306.004271		-305.502095 -305.930303		
Neutral Mono Dissociated in 4' Mono Dissociated in 4	-1560.445410 -1559.985859 -1559.988698	8.92 7.14	-1560.160338 -1559.713322 -1559.716069	11.80 10.08	6.9 5.6

Figure 4d_ESI Structures of the species involved in the proton transfer between the hydrated complexes of water and model *b* of tannic acid (see Table 4d_ESI for energies).

Gaussian decomposition of UV-vis spectra of gallic acid and tannic acid

Figure 5_ESI Heights of the bands at 213.3, 232.4, 263.6 300.1 and 350.6 nm, obtained by decomposition of gallic acid spectra between pH 4.91and 10.86 with the program SpecPeak.

λο	$W_{1/2}$
214.9	24.4
237.4	20.6
272.7	43.5
326.0	39.9

Table 5_ ESI Position (λ_0 wavelength, nm) and half-widths ($W_{1/2}$, nm) of the principal bands used for the deconvolution, with Gaussian functions, of the UV-vis spectra of the TA solutions, recorded as a function of pH between pH 5 and 9.

Figure 6_ ESI Heights of the bands at 214.9, 272.7, 237.4 and 326 nm, obtained by decomposition of tannic acid spectra until pH 9 with the program SpecPeak as a function of pH.

Multivariate Curve Resolution – Alternating Least Squares

The main goal of the Multivariate Curve Resolution – Alternating Least Squares (MCR-ALS) is the decomposition of an original dataset **D**, consisting of *n* spectra for each *n*-th measured object/sample, into novel matrices named **C** and **S**, plus a matrix **E** representing the residuals from the original data, as follows:

$\mathbf{D} = \mathbf{C}\mathbf{S}^{\mathsf{T}} + \mathbf{E}$

This is performed by means of a bilinear decomposition approach where **C** consists in a matrix of *m* concentration profiles related to *m* species (components), defined by a complete set of *n* pure spectra (with m < n) represented by **S**.² Moreover, this decomposition is made through an optimisation process that exploits the alternating least square technique, under defined constraints. The whole MCR-ALS algorithm follows different sequential steps. Firstly, Principal Component Analysis (PCA) or Single Value Decomposition (SVD) strategies are employed to define a number of *m* species (components) that make up the original dataset **D**.^{3,4} In particular, PCA and SVD allow extracting the highest amount of variance from the inspected dataset by defining the number of Principal Components (PC) that represent the pure compounds contained into the original multi-component mixture described by **D**. Then, initial estimates of the concentration profiles or the pure spectra are required to start the MCR-ALS process. In order to perform such estimation, methods like Purest Variable Selection method^{5,6} and Evolving Factor Analysis with a Fixed Size Moving Window (FSMW)⁸ are available.

Elaboration of UV-vis spectra by MCR-ALS

Figure 7_ ESI UV-vis spectra estimated by MCR-ALS for two differently protonated species of TA. The black dashed line represents the protonated species, while the red line stands for the deprotonated one.

Figure 8_ ESI Concentration profiles estimated by MCR-ALS for two differently protonated species of TA. The black dashed line represents the protonated species, while the red line stands for the deprotonated one. The intersection between the two lines represents the pK_a value of TA.

Elaboration of fluorescence EEMs by the MCR-ALS technique

Figure 9_ ESI Excitation (Absorption) spectra estimated by MCR-ALS. The grey dotted and the black dashed lines represent the GA and TA with protonated phenolic groups, respectively, while the green and the red lines stand for GA and TA with dissociated phenolic groups, respectively.

Figure 10_ESI Emission spectra estimated by MCR-ALS. The grey dotted and the black dashed lines represent the GA and TA with protonated phenolic groups, respectively, while the green and the red lines stand GA and TA with dissociated phenolic groups, respectively.

References

- 1 M. Asnaashari, R. Farhoosh and A. Sharif, *Food Chemistry*, 2014, **159**, 439.
- 2 A. de Juan, J. Jaumot and R. Tauler, Analytical Methods, 2014, 6, 4964
- 3 R. Bro and A. K. Smilde, *Analytical Methods*, 2014, **6**, 2812.
- 4 G. H. Golub and C. Reinsch, *Numerical Mathematics*, 1970, **14**, 403.
- 5 W. Windig and D. A. Stephenson, *Analytical Chemistry*, 1992, **64**, 2735.
- 6 W. Windig and J. Guilment, *Analytical Chemistry*, 1991, **63**, 1425.
- 7 M. Jalali-Heravi, R. S. Moazeni-Pourasil and H. Sereshti, *Journal of Chromatography B:* Biomedical Sciences and Applications, 2015, **983–984**, 83.
- 8 H. R. Keller and D. L. Massart, *Analytica Chimica Acta*, 1991, **246**, 379.