Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Supporting Information

Complexes of guest-host type between C₆₀ and group 9 metalloporphyrins

Ching Tat To and Kin Shing Chan*

Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong

Kong SAR, People's Republic of China

E-mail: ksc@cuhk.edu.hk

Contents

1.	Experimental	p. S2
2.	NMR Spectra	p. S5
3.	X-Ray Crystallographic Data	P. S7
4.	References	p. S8

1. Experimental

General Procedures and Instrumentation

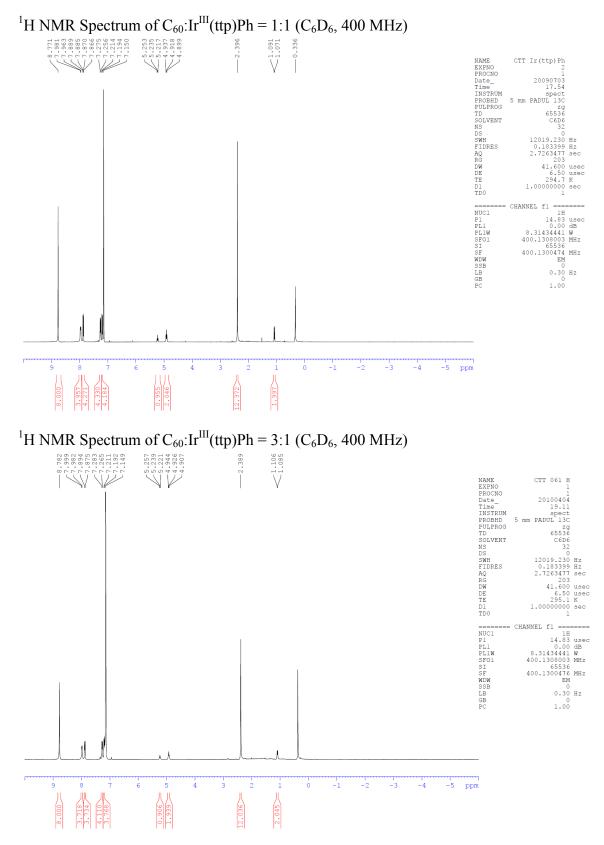
Unless otherwise noted, all reagents were purchased from commercial suppliers and directly used without further purification. Hexane was distilled from anhydrous calcium chloride. Ir^{III}(ttp)Ph¹ and Co^{III}(ttp)Ph² were prepared according to the literature procedures.

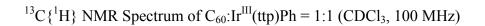
¹H and ¹³C{¹H} spectra were recorded on a Bruker AV-400 instrument at 400 and 100 MHz, respectively. Chemical shifts were referenced with the residual solvent protons in C₆D₆ (δ 7.15 ppm) in ¹H NMR spectra as the internal standards and in CDCl₃ (δ 77.16 ppm) in ¹³C{¹H} NMR spectra as the internal standards. Chemical shifts (δ) are reported in hertz (Hz). Coupling constants (*J*) were reported in Hertz (Hz).

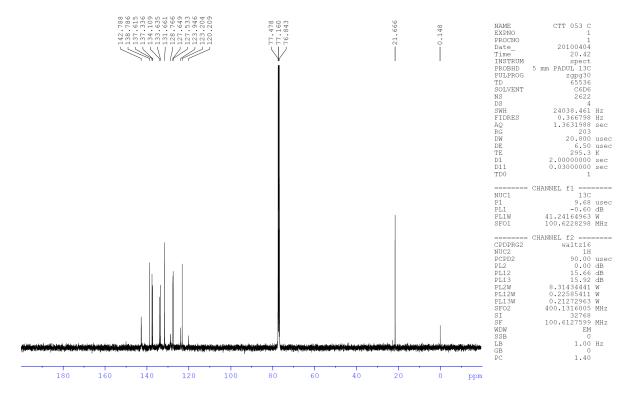
All single crystals were immersed in Paraton-N oil and sealed under N_2 in thin-walled glass capillaries. Data were collected at 296 K on a Bruker SMART 1000 CCD diffractometer using MoK_{*} radiation. An empirical absorption correction was applied using the SADABS program. All structures were solved by direct methods and subsequent Fourier difference techniques and refined anisotropically for all non-hydrogen atoms by full-matrix least squares calculations on F2 using the SHELXTL program package. All hydrogen atoms were geometrically fixed using the riding model.

Preparation of 1:1 stoichiometric ratio of C₆₀ and Ir^{III}(ttp)Ph. Ir^{III}(ttp)Ph (2.5 mg, 0.00266 mmol) was dissolved in toluene (1.5 mL) to give a red solution. C₆₀ (2.0 mg, 0.00278 mmol) was added into the solution. The solution mixture was treated in an ultrasonic cleaner (47kHz) for 1 min to give a dark brown solution. The single crystal obtained, namely C₆₀·3Ir^{III}(ttp)Ph, for X-

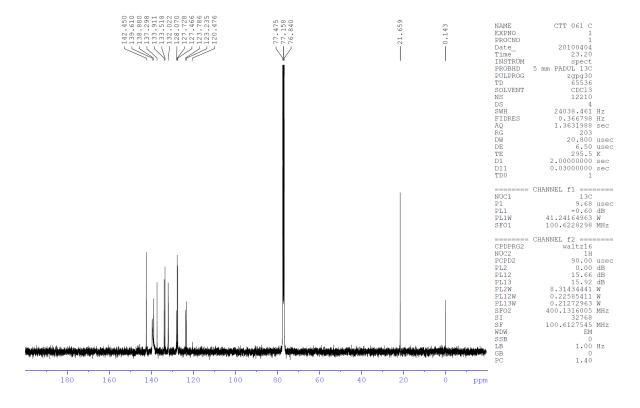
ray diffraction analysis was grown from slow diffusion of hexane vapour into the above toluene solution in the dark using vial in a vial method. Samples for ¹H and ¹³C{¹H} NMR analysis were prepared separately in benzene- d_6 and CDCl₃, respectively. ¹H NMR (400 MHz, C₆D₆): δ 1.08 (d, 2 H, J = 8.0 Hz), 2.40 (s, 12 H), 4.92 (t, 2 H, J = 7.6 Hz), 5.24 (t, 1 H, J = 7.2 Hz), 7.20 (d, 4 H, J = 8.0 Hz), 7.27 (d, 4 H, J = 7.6 Hz), 7.88 (dd, 4 H, J = 7.6 Hz, 1.6 Hz), 7.97 (d, 4 H, J = 7.2 Hz), 8.77 (s, 8 H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 21.7, 120.2, 123.2, 123.9, 127.5, 127.6, 128.8, 131.7, 133.6, 134.1, 137.3, 137.6 (coordinated C₆₀), 138.8, 142.8.


Preparation of 2:1 stoichiometric ratio of C₆₀ and Ir^{III}(ttp)Ph. Ir(ttp)Ph (2.5 mg, 0.00266 mmol) was dissolved in toluene (1.5 mL) to give a red solution. C₆₀ (4.0 mg, 0.00532 mmol) was added into the solution. The solution mixture was treated in an ultrasonic cleaner (47kHz) for 1 min to give a dark brown solution. The single crystal obtained, namely C₆₀·Ir^{III}(ttp)Ph, for X-ray diffraction analysis was grown from slow diffusion of hexane vapour into the above toluene solution in the dark using vial in a vial method. Due to the poor quality of single crystal, the X-ray analysis data obtained from below was presented.


Preparation of 3:1 stoichiometric ratio of C₆₀ and Ir^{III}(ttp)Ph. Ir(ttp)Ph (2.5 mg, 0.00266 mmol) was dissolved in toluene (1.5 mL) to give a red solution. C₆₀ (6.0 mg, 0.00833 mmol) was added into the solution. The solution mixture was treated in an ultrasonic cleaner (47kHz) for 1 min to give a dark brown solution. The single crystal obtained, namely C₆₀·Ir^{III}(ttp)Ph, for X-ray diffraction analysis was grown from slow diffusion of hexane vapour into the above toluene solution in the dark using vial in a vial method. Samples for ¹H and ¹³C {¹H} NMR analysis were prepared separately in benzene-*d*₆ and CDCl₃, respectively. ¹H NMR (400 MHz, C₆D₆): δ 1.10 (d, 2 H, *J* = 8.4 Hz), 2.39 (s, 12 H), 4.93 (t, 2 H, *J* = 7.4 Hz), 5.24 (t, 1 H, *J* = 7.2 Hz), 7.20 (d, 4 H, *J* = 7.6 Hz), 7.27 (d, 4 H, *J* = 7.2 Hz), 7.88 (d, 4 H, *J* = 7.6 Hz), 7.99 (d, 4 H, *J* = 6.8 Hz), 8.78 (s, 8


H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 21.7, 120.5, 123.2, 123.8, 127.5, 127.7, 128.1, 132.0, 133.5, 133.9, 137.3, 138.9, 139.6 (coordinated C₆₀), 142.4.

Preparation of 1:1 stoichiometric ratio of C₆₀ and Co^{III}(ttp)Ph. Co^{III}(ttp)Ph (2.2 mg, 0.00273 mmol) was dissolved in toluene (1.5 mL) to give a red solution. C₆₀ (2.0 mg, 0.00278 mmol) was added into the solution. The solution mixture was treated in an ultrasonic cleaner (47kHz) for 1 min to give a dark brown solution. The single crystal obtained, namely toluene $C_{60} \cdot Co^{III}$ (ttp)Ph, for X-ray diffraction analysis was grown from slow diffusion of hexane vapour into the above toluene solution in the dark using vial in a vial method.


2. NMR Spectra

 $^{13}C{^{1}H}$ NMR Spectrum of C₆₀:Ir^{III}(ttp)Ph = 3:1 (CDCl₃, 100 MHz)

3. X-Ray Crystallographic Data

	C ₆₀ ·Ir ^{III} (ttp)Ph	C ₆₀ ·3Ir ^{III} (ttp)Ph	C ₆₀ ·Co ^{III} (ttp)Ph/C ₇ H ₈	
CCDC noumber	1573104	1573102	1573103	
color, shape	red, block	red, block	red, block	
empirical formula	C ₁₁₄ H ₄₁ N ₄ Ir	C ₂₂₂ H ₁₂₃ N ₁₂ Ir ₃	C ₁₂₁ H ₄₉ N ₄ Co	
formula wt	1658.71	3534.92	1617.64	
temp (K)	296(2)	296(2)	296(2)	
wavelength (Å)	0.71073	0.71073	0.71073	
cryst syst	monoclinic	triclinic	monoclinic	
space group	C2/c	P-1	C2/c	
unit cell dimens				
<i>a</i> (Å)	16.3792(7)	18.078(3)	16.367(3)	
$b(\mathbf{A})$	22.5894(10)	19.791(4)	22.892(4)	
$c(\dot{A})$	21.6432(10)	27.758(5)	21.508(4)	
α (deg)	90	89.910(4)	90	
β (deg)	94.0580(10)	89.021(3)	93.794(4)	
γ (deg)	90	64.574(3)	90	
volume $(Å^3)$	7987.8(6)	8968(3)	8041(3)	
Z	4	2	4	
calcd density (g cm ⁻³)	1.379	1.309	1.297	
abs coeff (mm ⁻¹)	1.728	2.278	0.272	
<i>F</i> (000)	3320	3540	3224	
cryst size (mm)	0.400 x 0.300 x 0.200	0.400 x 0.300 x 0.200	0.400 x 0.300 x 0.200	
θ range for data collection (deg)	1.538 to 25.247	0.734 to 25.000	1.758 to 25.250	
	-19<=h<=19	-20<=h<=18	-19<=h<=19	
limiting indices	-27<=k<=27	-23<=k<=23	-27<=k<=27	
5	-25<=l<=25	-33<=1<=33	-25<=1<=25	
no. of rflns collected	50527	103733	44095	
independent rflns	7240 [R(int) = 0.0464]	30498 [R(int) = 0.0653]	7279 [R(int) = 0.0869]	
completeness to $\theta = 25.242$	99.8%	94%	99.8%	
absorp corr	semi-empirical from equivalents	multi-scan	multi-scan	
max. and min. transmn	0.7456 and 0.6166	0.7456 and 0.6360	0.7456 and 0.6579	
refinement method	full-matrix least-squares on F^2			
no. of data/ restraints / params	7240/15/538	30498/20/2134	7079/47/601	
GOF	1.115	1.123	1.235	
	$R_1 = 0.0335$	$R_1 = 0.1019$	$R_1 = 0.1127$	
final R indices $[I \ge 2\sigma(I)]$	$wR_2 = 0.0859$	$wR_2 = 0.3007$	$wR_2 = 0.3073$	
	$R_1 = 0.0377$	$R_1 = 0.1318$	$R_1 = 0.1419$	
R indices (all data)	$wR_2 = 0.0874$	$wR_2 = 0.3200$	$wR_2 = 0.3307$	
largest diff. peak and hole (e Å ⁻³)	1.398 and -1.902	7.967 and -4.310	3.156 and -0.464	

Table S1. Crystal data and summary of data collection and refinement

4. References

- 1. C. W. Cheung and K. S. Chan, *Organometallics*, 2011, **30**, 4269-4283.
- 2. C. R. Liu, Y. Y. Qian and K. S. Chan, *Dalton Trans.*, 2014, 43, 7771-7779.