Supporting Information

Structures and Single Crystal to Single Crystal Transformations of Cadmium Frameworks Using a Flexible Tripodal Ligand

Zongyao Zhang,^a Lijin Xu,*^a and Rui Cao*^{ab}

^aDepartment of Chemistry, Renmin University of China, Beijing 100872, China.

^bKey Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education,

School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an

710119, China.

*Correspondence E-mail: 20050062@ruc.edu.cn; ruicao@ruc.edu.cn

Complex	L	1	2	3	4
formula	$C_{33}H_{34.5}Cl_{1.5}N_7O_6$	$C_{66}H_{66}CdCl_2N_{14}O_8$	$C_{66}H_{66}Cd_2Cl_4N_{14}\\$	$C_{74}H_{78}Cd_2N_{14}O_8$	$C_{66}H_{66}CdCl_2N_{14}$
fw (g mol ^{-1})	678.35	1366.63	1421.92	1516.30	1238.62
<i>T</i> (K)	150(2)	150(2)	150(2)	150(2)	150(2)
crystal system	Triclinic	Trigonal	Monoclinic	Triclinic	Trigonal
space group	<i>P</i> 1	$R\bar{3}$	$P2_{1}/n$	Pī	$R\overline{3}$
<i>a</i> (Å)	9.7961(10)	12.1835(13)	14.010(6)	14.180(9)	13.094(3)
<i>b</i> (Å)	11.3348(16)	12.1835(13)	23.380(9)	15.386(8)	13.094(3)
<i>c</i> (Å)	15.5663(15)	38.086(5)	21.272(9)	18.466(12)	37.435(10)
α (°)	85.817(4)	90	90	101.133(19)°	90
eta (°)	84.393(4)	90	96.13(4)	92.04(3)°.	90
γ (°)	76.837(4)	120	90	92.143(19)°	120
Volume (Å ³)	1672.7(3)	4896.0(10)	6928(5)	3946(4)	5559(3)
Ζ	2	3	4	2	3
$\mu (\mathrm{mm}^{-1})$	0.209	0.482	0.817	0.598	0.411
F(000)	710	2118	2896	1560	1926
θ range	2.212 to 26.344°	2.207 to 25.991°	2.274 to 26.719°	2.250 to 26.394°	2.822 to 26.457°
reflections collected	36986	29258	51946	36826	10167
independent	11816	2132	14432	16017	2559
reflections	[R(int)= 0.0330]	[R(int)=0.0452]	[R(int) = 0.2096]	[R(int)=0.1417]	[R(int)=0.0674]
Goof	1.071	1.107	1.012	0.995	1.054
final R indices	$R1^a = 0.0566$	$R1^a = 0.0934$	$R1^a = 0.1173$	$R1^{a} = 0.0708$	$R1^a = 0.0506$
$[R > 2\sigma(I)]$	$w R_2^{\ b} = 0.1134$	$w R_2^{\ b} = 0.2668$	$wR_2^{\ b} = 0.3208$	$w R_2^{\ b} = 0.1388$	$w R_2^{\ b} = 0.1351$
R indices	$R1^{a} = 0.0788$	$R1^a = 0.1003$	$R1^a = 0.2261$	$R1^a = 0.1613$	$R1^a = 0.0631$
(all data)	$w R_2^{\ b} = 0.1270$	$w R_2^{\ b} = 0.2781$	$wR_2^{\ b} = 0.3844$	$w R_2^{\ b} = 0.1684$	$w R_2^{\ b} = 0.1418$

Table S1. Crystal data and structure refinement parameters for L and complexes 1-4.

 ${}^{a}R_{1} = \Sigma ||F_{o}| - |F_{c}|| / |F_{o}|, {}^{b}wR_{2} = \{\Sigma [w(F_{o}^{2} - F_{c}^{2})^{2}] / \Sigma [w(F_{o}^{2})^{2}]\}^{0.5}$

Scheme S1. Synthetic route of ligand L.

Figure S1. High-resolution mass spectrum of L.

Figure S2. ¹H NMR spectrum of L in CDCl₃.

Figure S3. ¹³C NMR spectrum of L in CDCl₃.

Figure S4. Thermal ellipsoid plot (50% probability) of the X-ray structure of complex

1. All hydrogen atoms are omitted for clarity.

Figure S5. Thermal ellipsoid plot (50% probability) of the X-ray structure of complex

2. All hydrogen atoms are omitted for clarity.

Figure S6. Thermal ellipsoid plot (50% probability) of the X-ray structure of complex3. All hydrogen atoms are omitted for clarity.

Figure S7. Thermal ellipsoid plot (50% probability) of the X-ray structure of complex4. All hydrogen atoms are omitted for clarity.

Figure S8. PXRD pattern of complex 4. Top: calculated; bottom: experimental.

Figure S9. PXRD pattern of complex 1. Top: calculated; bottom: experimental.

Figure S10. Solid-state emission spectra of complex 1 (red) and 4 (blue).

Figure S11. Solid-state excitation spectra of complex 1 (red) and 4 (blue).

Figure S12. TGA analysis of complex 1 (black) and 4 (red).

Figure S13. FTIR spectrum of complex 2.

Figure S14. FTIR spectrum of complex 3.