Synthesis, characterization and crystal structure of 2-chloroethyl (methylsulfonyl) methanesulfonate

J. E. Galván,¹ M. E. Defonsi Lestard,¹ O. E. Piro,² G. Echeverria,² R. D. I. Molina,³ M.E. Arena,³ S. E. Ulic,^{4,5} M. E. Tuttolomondo^{1*} and A. Ben Altabef^{1*}

¹INQUINOA-CONICET, Instituto de Química Física, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, R. Argentina.

²Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata and Institute IFLP (CONICET, CCT-La Plata), C. C. 67, 1900 La Plata, R. Argentina

³INBIOFAL-CONICET (Instituto de Biotecnología Farmacéutica y Alimentaria) Universidad Nacional de Tucumán, R. Argentina.

⁴CEQUINOR (CONICET-UNLP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 120 N° 1465 (1900) La Plata, R. Argentina.

⁵Departamento de Ciencias Básicas, Universidad Nacional de Lujan, Ruta 5 y 7, 6700 Luján, Buenos Aires, R. Argentina.

Empirical formula	C4 H9 Cl O5 S2
Formula weight	236.68
Temperature	296(2) K
Wavelength	1.54184 Å
Crystal system	Monoclinic
Space group	P 2 ₁
Unit cell dimensions	a = 9.4479(7) Å
	b = 5.5001(3) Å
	c = 10.0650(7) Å
	$\beta = 112.633(9)^{\circ}$
Volume	482.74(6) Å ³
Z, density (calculated)	2, 1.628 Mg/m ³
Absorption coefficient	7.485 mm ⁻¹
F(000)	244
Crystal size	0.305 x 0.162 x 0.080 mm ³
θ-range for data collection	4.760 to 70.824°
Index ranges	$-11 \le h \le 10, -6 \le k \le 5, -11 \le l \le 12$
Reflections collected	1784
Independent reflections	1263 [R(int) = 0.0299]
Observed reflections $[I>2\sigma(I)]$	1186
Completeness to $\vartheta = 67.684^{\circ}$	99.9 %
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	1263 / 1 / 110
Goodness-of-fit on F ²	1.081
Final R indices ^a [I>2o(I)]	R1 = 0.0427, wR2 = 0.1081
R indices (all data)	R1 = 0.0459, wR2 = 0.1149
Absolute structure parameter	0.09(5)

 Table S1. Crystal data and structure refinement results for2-chloro (methylsulfonyl) methanesulfonate.

Largest diff. peak and hole

 $\overline{{}^{a}R_{l}=\Sigma||F_{o}|-|F_{c}||/\Sigma|F_{o}|, wR_{2}=[\Sigma w(|F_{o}|^{2}-|F_{c}|^{2})^{2}/\Sigma w(|F_{o}|^{2})^{2}]^{1/2}}$

Atom	Х	У	Z	U(eq)
C(1)	6736(10)	8152(16)	5522(8)	69(2)
C(2)	7937(6)	5995(12)	3642(5)	42(1)
C(3)	7340(7)	3302(14)	468(6)	57(2)
C(4)	7466(7)	4540(15)	-783(6)	58(2)
O(3)	6392(5)	4877(9)	975(4)	55(1)
O(11)	7742(7)	3732(9)	5872(5)	70(1)
O(12)	9607(6)	7019(14)	6272(5)	84(2)
O(21)	6532(6)	1816(9)	2768(5)	64(1)
O(22)	4990(5)	5504(12)	2465(4)	67(2)
S(1)	8111(2)	6057(3)	5487(1)	49(1)
S(2)	6328(2)	4328(3)	2477(1)	46(1)
Cl	8599(2)	7216(5)	-285(3)	84(1)

Table S2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters $(Å^2x \ 10^3)$ for 2-chloro (methylsulfonyl) methanesulfonate. To be deposited.

Atom	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
C(1)	97(5)	57(4)	72(4)	-9(4)	53(4)	-1(4)
C(2)	44(2)	45(3)	41(2)	-4(2)	20(2)	-2(2)
C(3)	69(3)	59(4)	40(3)	-6(3)	18(2)	4(3)
C(4)	53(3)	75(5)	45(2)	-3(3)	19(2)	1(3)
O(3)	59(2)	68(3)	36(2)	3(2)	17(2)	11(2)
O(11)	108(4)	52(3)	49(2)	5(2)	31(2)	-7(3)
O(12)	74(3)	117(5)	51(2)	-15(3)	12(2)	-34(3)
O(21)	85(3)	50(3)	52(2)	-1(2)	22(2)	-16(2)
O(22)	45(2)	99(4)	54(2)	3(2)	18(2)	1(2)
S (1)	58(1)	46(1)	38(1)	1(1)	16(1)	-8(1)
S(2)	47(1)	55(1)	35(1)	2(1)	14(1)	-5(1)
Cl	75(1)	79(1)	105(2)	-1(1)	41(1)	-10(1)

Table S3. Anisotropic displacement parameters ($Å^2 \ge 10^3$) for 2-chloro (methylsulfonyl)methanesulfonate. To be deposited.

Atom	Х	у	Z	U(eq)
H(1A)	5730	7529	4976	104
H(1B)	6878	9661	5110	104
H(1C)	6845	8418	6499	104
H(2A)	7864	7652	3293	51
H(2B)	8862	5286	3605	51
H(3A)	6861	1722	189	68
H(3B)	8348	3077	1221	68
H(4A)	6448	4961	-1462	69
H(4B)	7917	3433	-1260	69
H(4B)	7917	3433	-1260	

Table S4. Hydrogen coordinates (x 10⁴) and isotropic displacement parameters ($Å^2x$ 10³) for the 2-chloro (methylsulfonyl) methanesulfonate. To be deposited.

		Di	mer R7	ner R7 Monomer					
	V rou			6-	6-	6-311G	6 21C(d)		
	A-lay		311G(3	3df)	311++(d,p)	(d,p)	0-310(u)		
Distances/Å	298K ^a	Unit 1	Unit 2				1		
C(1) H prom	0,96	1,089	1,089	1,089	1,089	1,091	1,092		
C(1) S(1)	1,747	1,78	1,78	1,782	1,802	1,803	1,804		
S(19) O(11)	1,418	1,442	1,436	1,435	1,459	1,464	1,465		
S(1) O(12)	1,429	1,437	1,450	1,439	1,464	1,468	1,468		
S(1) C(2)	1,801	1,817	1,808	1,823	1,844	1,842	1,843		
C(2) H(2A, 2B)	0,97	1,091	1,090	1,090	1,089	1,091	1,092		
C(2) S(2)	1,776	1,798	1,799	1,797	1,817	1,815	1,816		
S(2) O(21)	1,410	1,432	1,427	1,427	1,450	1,456	1,456		
S(2) O(22)	1,416	1,427	1,427	1,427	1,451	1,457	1,457		
S(2) O(3)	1,566	1,584	1,590	1,602	1,644	1,647	1,647		
C(3) O(3)	1,471	1,458	1,452	1,445	1,450	1,448	1,447		
C(3) H(3A, 3B)	0,97	1,09	1,091	1,091	1,092	1,094	1,094		
C(3) C(4)	1,476	1,505	1,307	1,507	1,510	1,513	1,514		
C(4) H(4A, 4B)	0,97	1,088	1,088	1,089	1,089	1,091	1,092		
C(4) Cl	1,775	1,801	1,800	1,802	1,813	1,812	1,812		
RMSD/Å									
Angles/°									
C(1) H prom	109,5	111	111,1	111,0	111,3	111,1	111,0		
H C(1) S (1)	109,5	107,9	107,7	107,9	107,5	107,8	107,9		
C(1) S(1) O(11)	109,1	108,6	109,5	108,9	109	108,7	108,7		
C(1) S(1) O(12)	109,2	108,9	108	108,6	108,6	108,7	108,7		
C(1) S(1) C(2)	105	105,4	105,1	104,7	104,9	104,3	104,3		
O(11) S(1) C(2)	109,3	108	109,7	108,6	108,6	108,2	108,3		
O(12) S(1) C(2)	104,8	104,9	104,3	104,0	103,5	104	104,0		
S(1) C(5) S(2)	113,9	116	116,6	116,4	116,2	115,8	115,8		
C(2) H(2A, 3B)	107,6	110,8	109,9	109,9	110,5	109,9	109,8		
C(2) S(2) O(21)	110,8	109,6	109,3	110,2	110,8	110,8	110,7		
C(2) S(2) O(22)	107,7	108,1	108,7	108,1	108,2	108,1	108,1		
C(2) S(2) O(3)	101,3	100,7	99,9	99,4	98,0	97,9	97,8		

Table S5. Theoretical and experimental geometric parameter of the Clomesone.

O(21) S(2) O(3)	109,6	109,4	107,4	109,1	108,9	109,2	109,2
O(22) S(2) O(3)	105,6	105,9	105,9	105,7	106,2	106,1	106,1
S(2) O(3) C(3)	118,4	119,9	119,9	121,1	120,6	119,5	119,6
C(3) H(3A,3B)	108,7	109,3	110,1	108,9	109,1	109	109,0
O(3) C(3) C(4)	106,5	107,4	108,3	109,0	108,9	109,1	109,1
C(3) C(4) Cl	112,3	112,4	112,8	112,3	112,1	112,3	112,2
C(4) H(4A,4B)	107,9	109,7	109,7	109,6	109,7	109,5	109,5
S(1) O ₂	118,5	120,1	119,3	120,9	121,1	121,5	121,5
S(2) O ₂	120	121	127,7	122,0	122,0	122	122,0
RMSD/°							
Dihedral Angles/°							
C(1) S(1) C(2) S(2)	-76,50	-69,5	-70,9	-70,7	-69,7	-71,3	-71,5
S(1) C(2) S(2) O(3)	173,60	175,4	165,9	168,1	164,0	167,1	167,5
C(2) S(2) O(3) C(3)	87,20	87,6	78,4	106,6	115,2	115,1	115,3
S(2) O(3) C(3) C(4)	-167,60	-176,7	-152,2	-142,0	-137,7	-135,9	-136,2
O(3)C(3)C(4)Cl	69,40	68,3	67,7	69,8	69,5	69,2	69,2
O(11) S(1) C(2) S(2)	40,40	48,4	46,7	45,5	46,6	44,3	44,1
O(12) S(1) C(2) S(2)	168,40	177,6	175,5	175,4	176,5	174,8	174,6
0(21) S(2) C(2) S(1)	-70,10	-69,2	-78,9	-77,4	-82,2	-78,8	-78,4
O(22) S(2) C(2) S(1)	63,00	64,5	56,1	58,0	53,9	57,3	57,6
O(21) S(2) O(3) C(3)	-29,90	-27,8	-36,4	-8,7	0,0	0,2	0,2
O(22) S(2) O(3) C(3)	-160,50	-159,8	-169	-141,5	-133,1	-133,5	-133,3
RSMD/°							
RSMD/total		2.17	3.49	5,09	6,78	6,63	6,61

Table S6. Theoretical inter / intramolecular hydrogen bonds of the dimer form for Clomesone,
 calculated at B3LYP/6-311(3df) level.

B3LYP/6-311G(3df)	d(D-H)	d(HA)	d(DA)	<(DHA)
C(1)-H(1A)O(22)	1.08	2.47	3.21	124.1
C(2)-H(2B)O(12)#3	1.09	2.22	3.27	149.0
C(3)-H(3B)O(12)#3	1.09	2.57	3.55	160.2

Mode	Obset	rved		Calcule	Approximate		
	IR ^a	<i>Raman^b</i>	B3LYP/6-	Scaled ^c	IR	Raman	description of mode ^f
			311(3df)		intensity ^d	activity ^e	
	3438 (w,br)						v _a OH
1	3038 (w)	3038(31)	3183	3042	1.8	27	$v_a C(1)H_3$
2	3038 (w)	3038(31)	3167	3028	2.0	32	$\nu_a C(2)H_2$
3	3038 (w)	3038 (31)	3156	3020	1,2	58	$v_a C(1)H_3$
4	3022 (vw)	3022(56)	3152	3016	3.1	49	$\nu_a C(4)H_2$
5	3022(vw)	3022(56)	3132	2998	2,5	44	$\nu_a C(3)H_2$
6	2990(m)	2991(35)	3096	2970	2,4	66	$v_s C(2)H_2$
7	2990(m)	2977(100)	3091	2963	16	165	$\nu_s C(4)H_2$
8	2938(vw)	2939(83)	3065	2936	1.1	133	$\nu_s C(1)H_3$
9	2928(w)	2925(76)	3057	2932	20	122	$v_s C(3)H_2$
10	1462(w)	1459(14)	1502	1476	6	7	δ C(3)H ₂
11	1430(w)	1430(25)	1469	1442	6	6	δ C(4)H ₂
12	1414(vw)	1413(96)	1459	1431	5	3	$\delta_a C(1)H_3$
13	1390(vw)	1390(5)	1451	1410	5	6	$\delta_a C(1)H_3$
14	1370(m)	1372(13)	1425	1406	165	3	$\nu_a S(2)O_2$
15	1361(m)	1365(13)	1405	1383	14	5	δ C(2)H ₂
16	1354(sh)	1357(6)	1402	1377	29	3	ω C(3)H ₂
17	1318(s)	1318(16)	1385	1367	180	5	$v_a S(1)O_2$
18	1301(sh)	1300(10)	1350	1330	23	1	δs C(1)H ₃
19	1253(vw)	1253 (10)	1333	1315	24	1	ω C(4)H ₂
20	1237(w)	1241(sh)	1271	1240	0,5	6	tω C(3)H ₂
21	1200(w)	1199(4)	1231	1205	55	2	ω C(2)H ₂
22	1186(m)	-	1223	1195	14	1,5	tω C(4)H ₂
23	1177(m)	1177(84)	1202	1189	97	19	$v_s S(2)O_2$
24	1166(m)	1160(20)	1179	1166	112	6	$v_s S(1)O_2$

 Table S7. Observed and Calculated Frequencies, Infrared and Raman Intensities for Clomesone.

25	1125(w)	1121(28)	1120	1108	9	5	tω C(2)H ₂
26	1072(w)	1072(4)	1087	1075	60	2	vC(4)-C(3)
27	988(m)	988 sh	1033	1012	151	3	vC(3)-O(3)
28	982(sh)	982(22)	984	966	32	0,8	ρC(1)H3
29	956(m)	954(7)	977	967	4	2	ρ C(1)H3
30	916(m)	913(9)	964	956	68	3	ρC(3)H ₂
31	870(m)	870(5)	890	886	136	0,8	ρ C(4)H ₂
32	802(sh)	804 sh	863	856	45	1	ρ C(2)H ₂
33	790(m)	794(24)	763	762	170	5	vC(2)-S(2)
34	766(w)	765sh	747	746	128	9	νC(1)-S(1)
35	758(w)	758(40)	730	730	12	5	vS(2)-O(3)
36	699(vw)	702(77)	670	670	7	24	v C(2)-S(1)
37	667(w)	666(79)	660	660	26	14	vC(3)-Cl
38	598(w)	600 (5)	600	600	26	1	$\omega S(2)O_2$
39	528(m)	528(15)	516	516	37	2	δ S(2)O ₂
40	507(m)	506(34)	500	500	38	1,3	δ S(1)O ₂
41	464(m)	464 sh	456	456	25	1	ω S(1)O ₂
42	459(w)	459(31)	453	449	30	3	ρ S(2)O ₂
43	419(w)	418(23)	406	403	16	4	δ Cl-C(4)-C(3)
44	-	364(25)	342	340	1	2	ρ S(1)O ₂
45	-	352 sh	332	332	3	0,6	tω S(2) O2
46	-	294(11)	281	281	3	2	δ O(3)-C(3)-C(4)
47	-	271(83)	260	260	1,6	5	tω S(1)O ₂
48	-	246(57)	232	232	1,6	1,4	δ C(1)S(1)C(2)
49	-	202(11)	222	122	1,4	4	δ C(2)-S(2)-O(3)
50	-	193 sh	206	106	1,2	1	δ S(2)-O(3)-C(3)
51	-	169(7)	184	-	1,3	0	$\tau C(1)-S(1)$
52	-	138 sh	145	-	3	1	δ S(2)-C(2)-S(1)
53	-	108(30)	106	-	4	1	τ C(4)-C(3)
54	-	-	84	-	3	0	τ C(3)-S(1)

55	-	-	38	-	5	0	τ S(1)-C(2)
56	-	-	32	-	1	0	τ C(3)-O(3)
57	-	-	20	-	3	0	τ S(2)-O(3)

^{*a*} sh, shoulder; br, broad; s, strong; w, weak; m, medium; v, very. ^{*b*} Relative band heights in parentheses. ^{*c*} Yoshida scaled method. ^{*d*} Units are km mol⁻¹. ^{*c*}Units are Å⁴ amu⁻¹. ^{*f*}Coordinate numbers correspond to Fig. 1

Bond (X-Y)	ρ	$\nabla^{2}\rho\left(L ight)$	λ_1/λ_3	$\varepsilon = \lambda_1/\lambda_2 - 1$	q (X)	q (Y)	q (X)	q (Y)
					Mul	liken	NI	PA
C(1A)-S(1A)	0.209	-0.422	1.25	0.034	-0.834	0.966	-0.797	2.172
S(1A)- C(2A)	0.194	-0.368	1.31	0.025	0.966	-0.663	2.172	-0.861
C(2A)-S(2A)	0.205	-0.412	1.22	0.009	-0.633	1.132	-0.861	2.402
S(2A)- O(3A)	0.230	-0.130	0.63	0.115	1.132	-0.541	2.402	-0.770
O(3A)- C(3A)	0.235	-0.440	1.04	0.043	-0.541	0.103	-0.770	-0.036
C(3A)- C(4A)	0.260	-0.624	1.29	0.042	0.103	-0.580	-0.036	-0.340
C(4A)-Cl(A)	0.177	-0.220	0.85	0.022	-0.580	-0.152	-0.340	-0.076
S(1A)-O(11A)	0.316	-0.806	0.30	0.017	0.966	-0.507	2.172	-0.936
S(1A)-O(12A)	0.314	-0.787	0.30	0.041	0.966	-0.474	2.172	-0.945
S(2A)-O(21A)	0.322	-0.860	0.27	0.05	1.132	-0.495	2.402	-0.919
S(2A)-O(22A)	0.323	-0.844	0.30	0.02	1.132	-0.502	2.402	-0.931

 Table S8. Topological properties of Clomesone calculated at B3LYP/6-311G(3df) level.

Figure S2. View of Clomesone, N-hexanoyl-L-homoserine lactone, $CH_3SO_2CH_2SO_2O^-$ and Colistin methansulfonate (CMS).