In situ grown $Co_3O_4/Co(OH)_2$ hybrids as efficient electrocatalysts for water oxidation

Xiaoqiang Du^{a*}, Hailong Pan^a and Zhi Yang^a

School of chemical engineering and technology, North University of China, Taiyuan 030051,

People's Republic of China. E-mail: duxq16@nuc.edu.cn

Fig.S1 FT-IR of $Co_3O_4/Co(OH)_2$ -12h-2, Co_3O_4 , $Co_3O_4/Co(OH)_2$ -4h, $Co_3O_4/Co(OH)_2$ -8h and $Co_3O_4/Co(OH)_2$ -12h.

Fig.S2 XPS of $Co_3O_4/Co(OH)_2$ -4h(a), $Co_3O_4/Co(OH)_2$ -8h(b) and $Co_3O_4/Co(OH)_2$ -12h(c) showing the region of Co $2p_{3/2}$ and Co $2p_{1/2}$ peaks of $Co_3O_4/Co(OH)_2$ -4h, $Co_3O_4/Co(OH)_2$ -8h and $Co_3O_4/Co(OH)_2$ -12h.

Fig.S3 Electrochemical double-layer capacitance measurements. The cyclic voltammograms (CVs) measurements with various scan rates for $Co_3O_4/Co(OH)_2$ -12h-2 in 1.0 M KOH.

Fig.S4 Electrochemical double-layer capacitance measurements. The cyclic voltammograms (CVs) measurements with various scan rates for Co_3O_4 , in 1.0 M KOH.

Fig.S5 Electrochemical double-layer capacitance measurements. The cyclic voltammograms (CVs) measurements with various scan rates for $Co_3O_4 / Co(OH)_2$ -4h in 1.0 M KOH.

Fig.S6 Electrochemical double-layer capacitance measurements. The cyclic voltammograms (CVs) measurements with various scan rates for $Co_3O_4 / Co(OH)_2$ -8h, in 1.0 M KOH.

Fig.S7 Electrochemical double-layer capacitance measurements. The cyclic voltammograms (CVs) measurements with various scan rates for $Co_3O_4/Co(OH)_2$ -12h in 1.0 M KOH.

Fig. S8 (a) Polarization curves of $Co_3O_4/Co(OH)_2$ -8h and $Co_3O_4/Co(OH)_2$ -8h@C in 1.0 M KOH at a potential sweep rate of 5 mV s⁻¹. Condition: The following steps were taken to prepare the working electrode: (1) 10 mg of catalyst(black) ;10 mg of catalyst and 5 mg C power (red)was first dispersed in ethanol (2 mL) to form a homogeneous mixture; (2) 20 µL of this solution was then drop-cast onto a glassy carbon electrode and left to dry in air; and (3) 20 µL of 0.5% Nafion solution in ethanol was cast on the top of the sample film to coat the catalyst.

Fig. S9 XRD of Co(OH)₂.

Fig. S10 (a) Polarization curves of Co_3O_4 and $Co(OH)_2$ in 1.0 M KOH at a potential sweep rate of 5 mV s⁻¹.