Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Electronic Supplementary Information

Non-covalent tetrel bonding interactions in hemidirectional

lead(II) complexes with nickel(II)-salen type metalloligands

Sourav Roy,^a Michael G. B. Drew,^b Antonio Bauzá,^c Antonio Frontera^c and Shouvik Chattopadhyay^{*a}

^aDepartment of Chemistry, Inorganic Section, Jadavpur University, Kolkata - 700032, India.

Tel: +9133-2457-2941; E-mail:shouvik.chem@gmail.com

^bSchool of Chemistry, The University of Reading, P.O. Box 224, Whiteknights, Reading RG6 6AD, United

Kingdom,

^cDepartment of Chemistry, Universitat de les Illes Balears, Crta de Valldemossa km 7.5, 07122 Palma de

Mallorca (Baleares), SPAIN; E-mail:toni.frontera@uib.es

Table S1: Selected bond angles (°) for complexes 1-4.

Complex	1	2	3	4
O(11)-Ni(1)-N(19)	90.86(15)	90.9(3)	91.0(2)	91.4(4)
O(11)-Pb(1)-O(131)	62.13(11)	64.7(2)	61.34(17)	64.2(3)
N(19)-Ni(1)-N(23)	97.43(16)	-	97.7(3)	95.0(5)
O(11)-Ni(1)-N(23)	169.57(16)	-	171.3(2)	169.9(4)
O(11)-Ni(1)-O(31)	79.83(15)	-	80.9(2)	82.3(4)

O(31)-Ni(1)-N(19)	170.59(16)	-	171.7(2)	172.5(5)
O(11)-Pb(1)-O(31)	66.96(12)	-	69.16(19)	71.0(3)
O(11)-Pb(1)-O(291)	127.66(11)	-	118.63(18)	131.1(3)
O(31)-Pb(1)-O(291)	63.22(12)	-	61.10(17)	63.0(3)
O(31)-Pb(1)-O(131)	128.85(12)	-	128.23(18)	133.2(4)
O(131)-Pb(1)-O(291)	157.79(11)	-	133.98(17)	147.6(3)
N(1)-Ni(1)-N(23)	91.56(18)	-	89.3(3)	92.8(5)
O(31)-Ni(1)-N(23)	91.68(16)	-	90.4(2)	90.7(4)
O(11)-Ni(1)-N(1)	94.92(16)	-	91.6(3)	94.6(5)
N(1)-Ni(1)-N(19)	88.93(18)	-	87.9(3)	93.0(5)
O(31)-Ni(1)-N(1)	93.20(17)	-	94.3(3)	91.6(5)
O(1)-Ni(1)-O(11)	-	92.1(3)	90.6(2)	82.9(4)
O(1)-Ni(1)-N(19)	-	91.0(4)	87.8(3)	88.7(5)
Cl(1)-Pb(1)-O(11)	-	85.77(19)	-	88.3(3)
Cl(1)-Pb(1)-O(131)	-	99.11(16)	-	78.3(2)
O(1)-Ni(1)-O(31)	-	-	90.3(2)	86.4(4)
O(1)-Ni(1)-N(1)	-	-	175.2(3)	177.0(5)
O(1)-Ni(1)-N(23)	-	-	89.2(2)	89.5(4)
Cl(1)-Pb(1)-Cl(1 ^a)	-	165.21(7)	-	-
Cl(1)-Pb(1)-O(11 ^a)	-	82.02(18)	_	-

Cl(1)-Pb(1)-O(131ª)	-	83.20(16)	-	-	
O(11ª)-Pb(1)-O(131ª)	-	64.7(2)	-	-	
O(1)-Ni(1)-O(1ª)	-	178.6(3)	-	-	
O(1)-Ni(1)-O(11ª)	-	86.9(3)	-	-	
O(1)-Ni(1)-N(19ª)	-	90.0(4)	-	-	
Cl(1°)-Pb(1)-O(11)	-	82.02(18)	-	-	
O(11)-Pb(1)-O(11ª)	-	68.6(3)	-	-	
O(11)-Pb(1)-O(131ª)	-	133.0(2)	-	-	
Cl(1 ^a)-Pb(1)-O(131)	-	83.20(16)	-	-	
O(1ª)-Ni(1)-O(11)	-	86.9(3)	-	-	
O(11)-Ni(1)-O(11ª)	-	79.6(3)	-	-	
O(11ª)-Pb(1)-O(131)	-	133.0(2)	-	-	
O(131)-Pb(1)-O(131ª)	-	162.2(2)	-	-	
O(11)-Ni(1)-N(19ª)	-	170.2(3)	-	-	
O(1ª)-Ni(1)-N(19)	-	90.0(4)	-	-	
O(11ª)-Ni(1)-N(19)	-	170.2(3)	-	-	
N(19)-Ni(1)-N(19ª)	-	98.7(4)	-	-	
O(1ª)-Ni(1)-O(11ª)	-	92.1(3)	-	-	
O(1ª)-Ni(1)-N(19ª)	-	91.0(4)	-	-	
O(11ª)-Ni(1)-N(19ª)	-	90.9(3)	-	-	

Cl(1ª)-Pb(1)-O(11ª)	-	85.77(19)	-	-
Cl(1ª)-Pb(1)-O(131ª)	-	99.11(16)	-	-
O(3)-Pb(1)-O(11)	-	-	77.2(2)	-
O(3)-Pb(1)-O(31)	-	-	90.2(2)	-
O(3)-Pb(1)-O(131)	-	-	92.86(18)	_
O(3)-Pb(1)-O(291)	-	-	133.09(18)	-
S(1 ^b)-Pb(1)-O(3)	-	-	78.32(14)	-
S(1 ^b)-Pb(1)-O(11)	-	-	147.61(14)	-
S(1 ^b)-Pb(1)-O(31)	-	-	90.11(15)	-
S(1 ^b)-Pb(1)-O(131)	-	-	140.99(12)	-
S(1 ^b)-Pb(1)-O(291)	-	-	66.44(13)	-
O(1)-Pb(1)-O(2)	50.45(16)	-	-	-
O(1)-Pb(1)-O(11)	124.25(15)	-	-	-
O(1)-Pb(1)-O(31)	87.10(15)	-	-	-
O(1)-Pb(1)-O(131)	125.62(14)	-	-	-
O(1)-Pb(1)-O(291)	68.43(14)	-	-	-
O(2)-Pb(1)-O(11)	78.52(13)	-	-	-
O(2)-Pb(1)-O(31)	86.97(14)	-	-	-
O(2)-Pb(1)-O(131)	87.67(14)	-	-	-
O(2)-Pb(1)-O(291)	113.05(13)	-	-	_

O(1W)-Ni(1)-O(11)	86.75(14)	-	-	-
O(1W)-Ni(1)-O(31)	89.90(15)	-	-	-
O(1W)-Ni(1)-N(1)	176.70(16)	-	-	-
O(1W)-Ni(1)-N(19)	88.20(16)	-	-	-
O(1W)-Ni(1)-N(23)	87.20(16)	-	-	-
Cl(1)-Pb(1)-O(31)	-	-	-	87.7(3)
Cl(1)-Pb(1)-O(291)	-	-	-	74.4(2)

Symmetry transformations: a = -x, y, 1/2-z; b = 1/2-x, 1/2+y, 1/2-z.

Fig. S1: IR spectrum of complex 1.

Fig. S2: IR spectrum of complex 2.

Fig. S3: IR spectrum of complex 3.

Fig. S4: IR spectrum of complex 4.

Fig. S5: UV-Vis spectrum of complex 1 in DMF.

Fig. S6: UV-Vis spectrum of complex 2 in acetonitrile.

Fig. S7: UV-Vis spectrum of complex 3 in DMF.

Fig. S8: UV-Vis spectrum of complex 4 in acetonitrile.

Fig. S9: UV-Vis spectrum of H_2L^1 in DMF.

Fig. S10: UV-Vis spectrum of H_2L^2 in acetonitrile.

Fig. S11: UV-Vis spectrum of H_2L^3 in acetonitrile.

Fig. S12: Fluorescence spectra of complexes 1-4.

Fig. S13: Fluorescence spectra of ligands.

Fig. S14: Complete AIM analyses of the dimers of complex 1.