Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Supporting information for

Synthesis and coordination studies of 5-(4'-carboxyphenyl)-10,15,20-

tris(pentafluorophenyl)porphyrin and its pyrrolidine-fused chlorin derivative

José Almeida, André M. N. Silva, Susana L. H. Rebelo, Luís Cunha-Silva, Maria Rangel,

Baltazar de Castro, Andreia Leite* and Ana M. G. Silva*

* Authors to whom correspondence should be addressed: Fax: (+351) 220402659; Tel: (+351) 220402585; e-mail: ana.silva@fc.up.pt or acleite@fc.up.pt

Contents

NMR spectra of porphyrin 1a	2
NMR spectra of chlorins 2a,b	4
NMR spectra of chlorin 2c	7
NMR spectra of chlorin 2d	10
NMR spectra of chlorin 3a	13
NMR spectra of chlorin 3b	16
NMR spectra of iBC 4a	19
NMR spectrum of porphyrin 1	22
NMR spectra of chlorin 2	24
NMR spectra of chlorin 3	25
NMR spectra of metalloporphyrin 1Zn	28
NMR spectra of metallochlorin 3Zn	30
MS-ESI spectra	31
SC-XRD data	36
Photophysical data	37
EPR spectra	38

Figure S1. ¹H NMR spectrum of porphyrin 1a (CDCl₃, 400.15 MHz).

Figure S2. ¹⁹F NMR spectrum of porphyrin 1a (CDCl₃, 376.46 MHz).

NMR spectra of chlorins 2a,b

Figure S3. ¹H NMR spectrum of chlorins 2a,b (CDCl₃, 400.15 MHz).

Figure S4. ¹⁹F NMR spectrum of chlorins 2a,b (CDCl₃, 376.46 MHz).

Figure S5. COSY spectrum of chlorins 2a,b.

NMR spectra of chlorin 2c

Figure S6. ¹H NMR spectrum of chlorin 2c (CDCl₃, 400.15 MHz).

Figure S7. ¹⁹F NMR spectrum of chlorin 2c CDCl₃, 376.46 MHz).

Figure S8. COSY spectrum of chlorin 2c

NMR spectra of chlorin 2d

Figure S9. ¹H NMR spectrum of chlorin 2d (CDCl₃, 400.15 MHz).

Figure S10. ¹⁹F NMR spectrum of chlorin 2d (CDCl₃, 376.46 MHz).

Figure S11. COSY spectrum of chlorin 2d.

NMR spectra of chlorin 3a

Figure S12. ¹H NMR spectrum of chlorin 3a (CDCl₃, 400.15 MHz).

Figure S13. ¹⁹F NMR spectrum of chlorin 3a (CDCl₃, 376.46 MHz).

Figure S14. COSY spectrum of chlorin 3a.

NMR spectra of chlorin 3b

Figure S15. ¹H NMR spectrum of chlorin 3b (CDCl₃, 400.15 MHz).

Figure S16. ¹⁹F NMR spectrum of chlorin 3b (CDCl₃, 376.46 MHz).

Figure S17. COSY spectrum of chlorin 3b.

NMR spectra of iBC 4a

Figure S18. ¹H NMR spectra of iBC 4a (CDCl₃, 400.15 MHz).

Figure S19. ¹⁹F NMR spectrum of iBC 4a (CDCl₃, 376.46 MHz).

Figure S20. COSY spectrum of iBC 4a.

NMR spectrum of porphyrin 1

Figure S21. ¹H NMR spectrum of porphyrin 1 (CDCl₃, 400.15 MHz).

Figure S22. ¹⁹F NMR spectrum of porphyrin 1 (CDCl₃, 376.46 MHz).

NMR spectra of chlorin 2

Figure S23. ¹H NMR spectrum of chlorin 2 (DMSO-d₆, 400.15 MHz).

NMR spectra of chlorin 3

Figure S24. ¹H NMR spectrum of chlorin 3 (DMSO-d₆, 400.15 MHz).

Figure S25. ¹⁹F NMR spectrum of chlorin 3 (DMSO-d₆, 376.46 MHz).

Figure S26. COSY spectrum of chlorin 3.

NMR spectra of metalloporphyrin 1Zn

Figure S27. ¹H NMR spectra of metalloporphyrin 1Zn (CDCl₃, 400.15 MHz).

Figure S28. ¹⁹F NMR spectra of metalloporphyrin 1Zn (CDCl₃, 376.46 MHz).

NMR spectra of metallochlorin 3Zn

Figure S29. ¹H NMR spectra of metallochlorin 3Zn (DMSO-d₆, 400.15 MHz).

MS-ESI spectra

Figure S30. MS spectrum of chlorins 2a,b.

Figure S31. MS spectrum of chlorin 2c.

Figure S32. MS spectrum of chlorin 2d.

Figure S34. MS spectrum of chlorin 3b.

Figure S35. MS spectrum of iBC 4a

Figure S36. MS spectrum of porphyrin 1.

Figure S37. MS spectrum of chlorin 2.

Figure S38. MS spectrum of chlorin 3.

Figure S39. MS spectrum of 1Fe.

Figure S40. MS spectrum of 1Cu.

Figure S41. MS spectrum of 1Zn.

Figure S42. MS spectrum of 3Fe.

Figure S44. MS spectrum of 3Zn.

SC-XRD data

Formula	$C_{54}H_{36}F_{15}N_4O_2$
$Fw / g mol^{-1}$	1057.87
Crystal type	red prism
Crystal size / mm ³	$0.35 \times 0.26 \times 0.12$
Crystal system	Monoclinic
Space group	C2/c
<i>a</i> / Å	16.7872(9)
b / Å	24.9663(13)
<i>c</i> / Å	26.3075(13)
α / °	90
β / °	91.737(2)
γ / °	90
Volume / Å ³	11020.8(10)
Ζ	8
Temparature / K	150(2)
D_c / g cm ⁻³	1.275
μ / mm ⁻¹	0.113
θ range	3.691 - 25.027
	$-19 \le h \le 19$
Index ranges	$-29 \le k \le 29$
	$-30 \le l \le 30$
Collected reflection	71076
Independent reflections	9700 ($R_{\rm int} = 0.0265$)
Data completeness	to $\theta = 25.03^{\circ}, 99.6\%$
Final <i>R</i> indices	R1 = 0.0626
[I>2σ(I)]	wR2 = 0.2499
Final <i>R</i> indices	R1 = 0.0758
(all data)	wR2 = 0.2696
$(\Delta \rho)_{\rm max,min}$ / e Å ⁻³	0.462 and -0.437

 Table S1. Crystal and structure refinement details for porphyrin 1.

Figure S45. Structural details fo porphyrin 1: dimer (a) and extended packing arrangements viewed in the ac (ab) and ab (c) planes of the unit cell; *n*-hexane atoms represented in purple.

Photophysical data

		Absorpti	on $\lambda_{\max}[nm]$ (ϵ_{\max} [M	Emission		
Entry	Compound	B(0,0)	Q(1,0)	Q(0,0)	$\lambda_{\max}[nm]$	ϕ_{F}
1	1	409 (173x10 ³)	505 (12x10 ³) ^a	536 (0.8 x10 ³)ª	642, 708	0.051
			582 (4x10 ³)ª	653 (2x10 ³) ^a		
2	1Fe	404 (65x10 ³)	583 (35x10 ³)		N.O.°	0.008
3	1Cu	408 (139x10 ³)	536 (57x10 ³)	569 (19x10 ³)	N.O.°	0.01
4	1Zn	418 (346x10 ³)	551 (5x10 ³)	583 (0.48x10 ³)	599, 645	0.033
5	3	400 (115x10 ³)	503 (12x10 ³) ^a 530 (5.5x10 ³) ^a		648, 714	0.157
			594 (7.2x10 ³) ^a	647 (35x10 ³) ^a		
6	3Fe	404 (65x10 ³)	535 (6.7x10 ³)	651 (9.9x10 ³)	N.O.°	0.007
7	3Cu	407 (171x10 ³)	567 (6.8x10 ³)	611 (34x10 ³)	N.O.°	0.008
8	3Zn	412 (305x10 ³)	579 ^b	615 (50x10 ³)	620, 672	0.079

Table S2. Absorption and emission spectra data for synthesized compounds 1, 1Fe, 1Cu, 1Zn, 3, 3Fe, 3Cu and 3Zn, in methanol.

^aThe Q(1,0) and Q(0,0) bands are each split into $Q_y(1,0)$ and $Q_x(1,0)$ and $Q_y(0,0)$ and $Q_x(0,0)$, respectively. In compound **3**, the Q(1,0) and Q(0,0) bands are each split into the $Q_x(1,0)$ and $Q_y(1,0)$ and $Q_x(0,0)$ and $Q_y(0,0)$ bands, respectively. The $Q_y(0,0)$ band corresponds to the Q band with maximum absorbance.

^bThe determination of ε wasn't possible without a significant experimental error.

^cThe emission spectra was not observable, or too low in intensity to be observed.

EPR spectra

Figure S46. EPR spectrum of 1Cu (black line) and EPR spectrum of 1Cu obtained by computer simulation (red line).

Figure S47. EPR spectrum of 3Cu (black line) and EPR spectrum of 3Cu obtained by computer simulation (red line).

Table S3. Spin-Hamiltonian parameters for 1Cu, 3Cu and for 1Zn and 3Zn after addition of acopper(II) solution ten times more concentrated (1Zn/3Zn + Cu(II)).

	a	a	a		A _x	Ay	Az
	8x	B y	g_z		(Gauss)	(Gauss)	(Gauss)
1Cu	2.066	2.066	2.184	Cu	35	35	212
				$^{14}N_{1,3}$	20	15	15
				$^{14}N_{2,4}$	15	15	20
3Cu	2.064	2.060	2.190	Cu	35	35	208
				$^{14}N_{1,3}$	19	15	15
				$^{14}N_{2,4}$	15	15	19
1Zn + Cu(II)	2.076	2.076	2.362	Cu	10	10	136
3Zn + Cu(II)	2.076	2.076	2.360	Cu	10	10	140

Figure S48. A) EPR spectra of porphyrin 1 obtained in a DMSO/toluene frozen matrix after addition of different concentrations of copper(II) solutions. Porphyrin 1 without any addition (red line); porphyrin 1:copper(II) (1:1) (yellow line); porphyrin 1:copper(II) (1:4) (green line); porphyrin 1:copper(II) (1:8) (light blue line); porphyrin 1:copper (II) (1:10) (dark blue line), B) EPR spectra of porphyrin 1 after addition of an equimolar solution of Cu(II) (black line) and after addition of a ten time more concentrated solution of Cu(II) (red line).

Figure S49. EPR spectra of 1Cu after addition of a ten time more concentrated solution of Cu(II) (red line), and EPR simulation of the same solution (black line). The simulation was obtained by considering the sum of the Spin-Hamiltonian parameters of the 1Cu and 1Zn spectra.